Inverse optimization in minimum cost flow problems on countably infinite networks
Given the costs and a feasible solution for a minimum cost flow problem on a countably infinite network, inverse optimization involves finding new costs that are close to the original ones and that make the given solution optimal. We study this problem using the weighted absolute sum metric to quant...
Gespeichert in:
Veröffentlicht in: | Networks 2019-04, Vol.73 (3), p.292-305 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 305 |
---|---|
container_issue | 3 |
container_start_page | 292 |
container_title | Networks |
container_volume | 73 |
creator | Nourollahi, Sevnaz Ghate, Archis |
description | Given the costs and a feasible solution for a minimum cost flow problem on a countably infinite network, inverse optimization involves finding new costs that are close to the original ones and that make the given solution optimal. We study this problem using the weighted absolute sum metric to quantify closeness of cost vectors. We provide sufficient conditions under which known results from inverse optimization in minimum cost flow problems on finite networks extend to the countably infinite case. These conditions ensure that recent duality results on countably infinite linear programs can be applied to our setting. Specifically, they enable us to prove that the inverse optimization problem can be reformulated as a capacitated, minimum cost circulation problem on a countably infinite network. Finite‐dimensional truncations of this problem can be solved in polynomial time when the weights equal one, which yields an efficient solution method. The circulation problem can also be solved via the shadow simplex method, where each finite‐dimensional truncation is tackled using the usual network Simplex algorithm that is empirically known to be computationally efficient. We illustrate these results on an infinite horizon shortest path problem. |
doi_str_mv | 10.1002/net.21862 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2189199527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2189199527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3322-20659e4350c10f88cf5bbc359596a1895ade9fe3d34bdd054114517fcc551dc33</originalsourceid><addsrcrecordid>eNp10M9LwzAUB_AgCs7pwf8g4MlDt7ykWZujjDkHQxHmObRpApltM5PUMf96o_Xq6R3e5_3gi9AtkBkQQue9jjMK5YKeoQkQUWSEsOIcTVKvzBjJ-SW6CmFPCACHcoJeN_2n9kFjd4i2s19VtK7Htsed7W03dFi5ELFp3REfvKtb3QWcgHJDH6u6PSVqkowap8tH59_DNbowVRv0zV-dorfH1W75lG1f1pvlwzZTjFGaUbLgQueMEwXElKUyvK4V44KLRQWl4FWjhdGsYXndNITnADmHwijFOTRpxxTdjXvTXx-DDlHu3eD7dFKmAAQIwWmR1P2olHcheG3kwduu8icJRP4kJtPf8jexZOejPdpWn_6H8nm1Gye-AbJQbaM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2189199527</pqid></control><display><type>article</type><title>Inverse optimization in minimum cost flow problems on countably infinite networks</title><source>Access via Wiley Online Library</source><creator>Nourollahi, Sevnaz ; Ghate, Archis</creator><creatorcontrib>Nourollahi, Sevnaz ; Ghate, Archis</creatorcontrib><description>Given the costs and a feasible solution for a minimum cost flow problem on a countably infinite network, inverse optimization involves finding new costs that are close to the original ones and that make the given solution optimal. We study this problem using the weighted absolute sum metric to quantify closeness of cost vectors. We provide sufficient conditions under which known results from inverse optimization in minimum cost flow problems on finite networks extend to the countably infinite case. These conditions ensure that recent duality results on countably infinite linear programs can be applied to our setting. Specifically, they enable us to prove that the inverse optimization problem can be reformulated as a capacitated, minimum cost circulation problem on a countably infinite network. Finite‐dimensional truncations of this problem can be solved in polynomial time when the weights equal one, which yields an efficient solution method. The circulation problem can also be solved via the shadow simplex method, where each finite‐dimensional truncation is tackled using the usual network Simplex algorithm that is empirically known to be computationally efficient. We illustrate these results on an infinite horizon shortest path problem.</description><identifier>ISSN: 0028-3045</identifier><identifier>EISSN: 1097-0037</identifier><identifier>DOI: 10.1002/net.21862</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Algorithms ; Cost engineering ; countably infinite linear programs ; duality ; infinite-dimensional optimization ; Minimum cost ; Optimization ; Polynomials ; Shortest-path problems ; Simplex method</subject><ispartof>Networks, 2019-04, Vol.73 (3), p.292-305</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3322-20659e4350c10f88cf5bbc359596a1895ade9fe3d34bdd054114517fcc551dc33</citedby><cites>FETCH-LOGICAL-c3322-20659e4350c10f88cf5bbc359596a1895ade9fe3d34bdd054114517fcc551dc33</cites><orcidid>0000-0001-6093-5340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnet.21862$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnet.21862$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Nourollahi, Sevnaz</creatorcontrib><creatorcontrib>Ghate, Archis</creatorcontrib><title>Inverse optimization in minimum cost flow problems on countably infinite networks</title><title>Networks</title><description>Given the costs and a feasible solution for a minimum cost flow problem on a countably infinite network, inverse optimization involves finding new costs that are close to the original ones and that make the given solution optimal. We study this problem using the weighted absolute sum metric to quantify closeness of cost vectors. We provide sufficient conditions under which known results from inverse optimization in minimum cost flow problems on finite networks extend to the countably infinite case. These conditions ensure that recent duality results on countably infinite linear programs can be applied to our setting. Specifically, they enable us to prove that the inverse optimization problem can be reformulated as a capacitated, minimum cost circulation problem on a countably infinite network. Finite‐dimensional truncations of this problem can be solved in polynomial time when the weights equal one, which yields an efficient solution method. The circulation problem can also be solved via the shadow simplex method, where each finite‐dimensional truncation is tackled using the usual network Simplex algorithm that is empirically known to be computationally efficient. We illustrate these results on an infinite horizon shortest path problem.</description><subject>Algorithms</subject><subject>Cost engineering</subject><subject>countably infinite linear programs</subject><subject>duality</subject><subject>infinite-dimensional optimization</subject><subject>Minimum cost</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Shortest-path problems</subject><subject>Simplex method</subject><issn>0028-3045</issn><issn>1097-0037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10M9LwzAUB_AgCs7pwf8g4MlDt7ykWZujjDkHQxHmObRpApltM5PUMf96o_Xq6R3e5_3gi9AtkBkQQue9jjMK5YKeoQkQUWSEsOIcTVKvzBjJ-SW6CmFPCACHcoJeN_2n9kFjd4i2s19VtK7Htsed7W03dFi5ELFp3REfvKtb3QWcgHJDH6u6PSVqkowap8tH59_DNbowVRv0zV-dorfH1W75lG1f1pvlwzZTjFGaUbLgQueMEwXElKUyvK4V44KLRQWl4FWjhdGsYXndNITnADmHwijFOTRpxxTdjXvTXx-DDlHu3eD7dFKmAAQIwWmR1P2olHcheG3kwduu8icJRP4kJtPf8jexZOejPdpWn_6H8nm1Gye-AbJQbaM</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Nourollahi, Sevnaz</creator><creator>Ghate, Archis</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6093-5340</orcidid></search><sort><creationdate>201904</creationdate><title>Inverse optimization in minimum cost flow problems on countably infinite networks</title><author>Nourollahi, Sevnaz ; Ghate, Archis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3322-20659e4350c10f88cf5bbc359596a1895ade9fe3d34bdd054114517fcc551dc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Cost engineering</topic><topic>countably infinite linear programs</topic><topic>duality</topic><topic>infinite-dimensional optimization</topic><topic>Minimum cost</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Shortest-path problems</topic><topic>Simplex method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nourollahi, Sevnaz</creatorcontrib><creatorcontrib>Ghate, Archis</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nourollahi, Sevnaz</au><au>Ghate, Archis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse optimization in minimum cost flow problems on countably infinite networks</atitle><jtitle>Networks</jtitle><date>2019-04</date><risdate>2019</risdate><volume>73</volume><issue>3</issue><spage>292</spage><epage>305</epage><pages>292-305</pages><issn>0028-3045</issn><eissn>1097-0037</eissn><abstract>Given the costs and a feasible solution for a minimum cost flow problem on a countably infinite network, inverse optimization involves finding new costs that are close to the original ones and that make the given solution optimal. We study this problem using the weighted absolute sum metric to quantify closeness of cost vectors. We provide sufficient conditions under which known results from inverse optimization in minimum cost flow problems on finite networks extend to the countably infinite case. These conditions ensure that recent duality results on countably infinite linear programs can be applied to our setting. Specifically, they enable us to prove that the inverse optimization problem can be reformulated as a capacitated, minimum cost circulation problem on a countably infinite network. Finite‐dimensional truncations of this problem can be solved in polynomial time when the weights equal one, which yields an efficient solution method. The circulation problem can also be solved via the shadow simplex method, where each finite‐dimensional truncation is tackled using the usual network Simplex algorithm that is empirically known to be computationally efficient. We illustrate these results on an infinite horizon shortest path problem.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/net.21862</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6093-5340</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-3045 |
ispartof | Networks, 2019-04, Vol.73 (3), p.292-305 |
issn | 0028-3045 1097-0037 |
language | eng |
recordid | cdi_proquest_journals_2189199527 |
source | Access via Wiley Online Library |
subjects | Algorithms Cost engineering countably infinite linear programs duality infinite-dimensional optimization Minimum cost Optimization Polynomials Shortest-path problems Simplex method |
title | Inverse optimization in minimum cost flow problems on countably infinite networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A10%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20optimization%20in%20minimum%20cost%20flow%20problems%20on%20countably%20infinite%20networks&rft.jtitle=Networks&rft.au=Nourollahi,%20Sevnaz&rft.date=2019-04&rft.volume=73&rft.issue=3&rft.spage=292&rft.epage=305&rft.pages=292-305&rft.issn=0028-3045&rft.eissn=1097-0037&rft_id=info:doi/10.1002/net.21862&rft_dat=%3Cproquest_cross%3E2189199527%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2189199527&rft_id=info:pmid/&rfr_iscdi=true |