Inverse optimization in minimum cost flow problems on countably infinite networks

Given the costs and a feasible solution for a minimum cost flow problem on a countably infinite network, inverse optimization involves finding new costs that are close to the original ones and that make the given solution optimal. We study this problem using the weighted absolute sum metric to quant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Networks 2019-04, Vol.73 (3), p.292-305
Hauptverfasser: Nourollahi, Sevnaz, Ghate, Archis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 305
container_issue 3
container_start_page 292
container_title Networks
container_volume 73
creator Nourollahi, Sevnaz
Ghate, Archis
description Given the costs and a feasible solution for a minimum cost flow problem on a countably infinite network, inverse optimization involves finding new costs that are close to the original ones and that make the given solution optimal. We study this problem using the weighted absolute sum metric to quantify closeness of cost vectors. We provide sufficient conditions under which known results from inverse optimization in minimum cost flow problems on finite networks extend to the countably infinite case. These conditions ensure that recent duality results on countably infinite linear programs can be applied to our setting. Specifically, they enable us to prove that the inverse optimization problem can be reformulated as a capacitated, minimum cost circulation problem on a countably infinite network. Finite‐dimensional truncations of this problem can be solved in polynomial time when the weights equal one, which yields an efficient solution method. The circulation problem can also be solved via the shadow simplex method, where each finite‐dimensional truncation is tackled using the usual network Simplex algorithm that is empirically known to be computationally efficient. We illustrate these results on an infinite horizon shortest path problem.
doi_str_mv 10.1002/net.21862
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2189199527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2189199527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3322-20659e4350c10f88cf5bbc359596a1895ade9fe3d34bdd054114517fcc551dc33</originalsourceid><addsrcrecordid>eNp10M9LwzAUB_AgCs7pwf8g4MlDt7ykWZujjDkHQxHmObRpApltM5PUMf96o_Xq6R3e5_3gi9AtkBkQQue9jjMK5YKeoQkQUWSEsOIcTVKvzBjJ-SW6CmFPCACHcoJeN_2n9kFjd4i2s19VtK7Htsed7W03dFi5ELFp3REfvKtb3QWcgHJDH6u6PSVqkowap8tH59_DNbowVRv0zV-dorfH1W75lG1f1pvlwzZTjFGaUbLgQueMEwXElKUyvK4V44KLRQWl4FWjhdGsYXndNITnADmHwijFOTRpxxTdjXvTXx-DDlHu3eD7dFKmAAQIwWmR1P2olHcheG3kwduu8icJRP4kJtPf8jexZOejPdpWn_6H8nm1Gye-AbJQbaM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2189199527</pqid></control><display><type>article</type><title>Inverse optimization in minimum cost flow problems on countably infinite networks</title><source>Access via Wiley Online Library</source><creator>Nourollahi, Sevnaz ; Ghate, Archis</creator><creatorcontrib>Nourollahi, Sevnaz ; Ghate, Archis</creatorcontrib><description>Given the costs and a feasible solution for a minimum cost flow problem on a countably infinite network, inverse optimization involves finding new costs that are close to the original ones and that make the given solution optimal. We study this problem using the weighted absolute sum metric to quantify closeness of cost vectors. We provide sufficient conditions under which known results from inverse optimization in minimum cost flow problems on finite networks extend to the countably infinite case. These conditions ensure that recent duality results on countably infinite linear programs can be applied to our setting. Specifically, they enable us to prove that the inverse optimization problem can be reformulated as a capacitated, minimum cost circulation problem on a countably infinite network. Finite‐dimensional truncations of this problem can be solved in polynomial time when the weights equal one, which yields an efficient solution method. The circulation problem can also be solved via the shadow simplex method, where each finite‐dimensional truncation is tackled using the usual network Simplex algorithm that is empirically known to be computationally efficient. We illustrate these results on an infinite horizon shortest path problem.</description><identifier>ISSN: 0028-3045</identifier><identifier>EISSN: 1097-0037</identifier><identifier>DOI: 10.1002/net.21862</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Cost engineering ; countably infinite linear programs ; duality ; infinite-dimensional optimization ; Minimum cost ; Optimization ; Polynomials ; Shortest-path problems ; Simplex method</subject><ispartof>Networks, 2019-04, Vol.73 (3), p.292-305</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3322-20659e4350c10f88cf5bbc359596a1895ade9fe3d34bdd054114517fcc551dc33</citedby><cites>FETCH-LOGICAL-c3322-20659e4350c10f88cf5bbc359596a1895ade9fe3d34bdd054114517fcc551dc33</cites><orcidid>0000-0001-6093-5340</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnet.21862$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnet.21862$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Nourollahi, Sevnaz</creatorcontrib><creatorcontrib>Ghate, Archis</creatorcontrib><title>Inverse optimization in minimum cost flow problems on countably infinite networks</title><title>Networks</title><description>Given the costs and a feasible solution for a minimum cost flow problem on a countably infinite network, inverse optimization involves finding new costs that are close to the original ones and that make the given solution optimal. We study this problem using the weighted absolute sum metric to quantify closeness of cost vectors. We provide sufficient conditions under which known results from inverse optimization in minimum cost flow problems on finite networks extend to the countably infinite case. These conditions ensure that recent duality results on countably infinite linear programs can be applied to our setting. Specifically, they enable us to prove that the inverse optimization problem can be reformulated as a capacitated, minimum cost circulation problem on a countably infinite network. Finite‐dimensional truncations of this problem can be solved in polynomial time when the weights equal one, which yields an efficient solution method. The circulation problem can also be solved via the shadow simplex method, where each finite‐dimensional truncation is tackled using the usual network Simplex algorithm that is empirically known to be computationally efficient. We illustrate these results on an infinite horizon shortest path problem.</description><subject>Algorithms</subject><subject>Cost engineering</subject><subject>countably infinite linear programs</subject><subject>duality</subject><subject>infinite-dimensional optimization</subject><subject>Minimum cost</subject><subject>Optimization</subject><subject>Polynomials</subject><subject>Shortest-path problems</subject><subject>Simplex method</subject><issn>0028-3045</issn><issn>1097-0037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10M9LwzAUB_AgCs7pwf8g4MlDt7ykWZujjDkHQxHmObRpApltM5PUMf96o_Xq6R3e5_3gi9AtkBkQQue9jjMK5YKeoQkQUWSEsOIcTVKvzBjJ-SW6CmFPCACHcoJeN_2n9kFjd4i2s19VtK7Htsed7W03dFi5ELFp3REfvKtb3QWcgHJDH6u6PSVqkowap8tH59_DNbowVRv0zV-dorfH1W75lG1f1pvlwzZTjFGaUbLgQueMEwXElKUyvK4V44KLRQWl4FWjhdGsYXndNITnADmHwijFOTRpxxTdjXvTXx-DDlHu3eD7dFKmAAQIwWmR1P2olHcheG3kwduu8icJRP4kJtPf8jexZOejPdpWn_6H8nm1Gye-AbJQbaM</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Nourollahi, Sevnaz</creator><creator>Ghate, Archis</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6093-5340</orcidid></search><sort><creationdate>201904</creationdate><title>Inverse optimization in minimum cost flow problems on countably infinite networks</title><author>Nourollahi, Sevnaz ; Ghate, Archis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3322-20659e4350c10f88cf5bbc359596a1895ade9fe3d34bdd054114517fcc551dc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Cost engineering</topic><topic>countably infinite linear programs</topic><topic>duality</topic><topic>infinite-dimensional optimization</topic><topic>Minimum cost</topic><topic>Optimization</topic><topic>Polynomials</topic><topic>Shortest-path problems</topic><topic>Simplex method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nourollahi, Sevnaz</creatorcontrib><creatorcontrib>Ghate, Archis</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nourollahi, Sevnaz</au><au>Ghate, Archis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse optimization in minimum cost flow problems on countably infinite networks</atitle><jtitle>Networks</jtitle><date>2019-04</date><risdate>2019</risdate><volume>73</volume><issue>3</issue><spage>292</spage><epage>305</epage><pages>292-305</pages><issn>0028-3045</issn><eissn>1097-0037</eissn><abstract>Given the costs and a feasible solution for a minimum cost flow problem on a countably infinite network, inverse optimization involves finding new costs that are close to the original ones and that make the given solution optimal. We study this problem using the weighted absolute sum metric to quantify closeness of cost vectors. We provide sufficient conditions under which known results from inverse optimization in minimum cost flow problems on finite networks extend to the countably infinite case. These conditions ensure that recent duality results on countably infinite linear programs can be applied to our setting. Specifically, they enable us to prove that the inverse optimization problem can be reformulated as a capacitated, minimum cost circulation problem on a countably infinite network. Finite‐dimensional truncations of this problem can be solved in polynomial time when the weights equal one, which yields an efficient solution method. The circulation problem can also be solved via the shadow simplex method, where each finite‐dimensional truncation is tackled using the usual network Simplex algorithm that is empirically known to be computationally efficient. We illustrate these results on an infinite horizon shortest path problem.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/net.21862</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6093-5340</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-3045
ispartof Networks, 2019-04, Vol.73 (3), p.292-305
issn 0028-3045
1097-0037
language eng
recordid cdi_proquest_journals_2189199527
source Access via Wiley Online Library
subjects Algorithms
Cost engineering
countably infinite linear programs
duality
infinite-dimensional optimization
Minimum cost
Optimization
Polynomials
Shortest-path problems
Simplex method
title Inverse optimization in minimum cost flow problems on countably infinite networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A10%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20optimization%20in%20minimum%20cost%20flow%20problems%20on%20countably%20infinite%20networks&rft.jtitle=Networks&rft.au=Nourollahi,%20Sevnaz&rft.date=2019-04&rft.volume=73&rft.issue=3&rft.spage=292&rft.epage=305&rft.pages=292-305&rft.issn=0028-3045&rft.eissn=1097-0037&rft_id=info:doi/10.1002/net.21862&rft_dat=%3Cproquest_cross%3E2189199527%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2189199527&rft_id=info:pmid/&rfr_iscdi=true