A data-driven approach for the optimisation of product specifications

In order to develop the profit-maximising, market share-maximising or cost-minimising bundle of product engineering specifications with proper performance levels, an optimisation model driven by operating data is proposed. The operating data are input as the sources to conduct the optimisation and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of production research 2019-02, Vol.57 (3), p.703-721
Hauptverfasser: Zhang, Lei, Chu, Xuening, Chen, Hansi, Yan, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 721
container_issue 3
container_start_page 703
container_title International journal of production research
container_volume 57
creator Zhang, Lei
Chu, Xuening
Chen, Hansi
Yan, Bo
description In order to develop the profit-maximising, market share-maximising or cost-minimising bundle of product engineering specifications with proper performance levels, an optimisation model driven by operating data is proposed. The operating data are input as the sources to conduct the optimisation and a data-based customer satisfaction function can be formed. Then, a customer choice model developed from the customer satisfaction is constructed to estimate the customer choice probability. The expected market share (EMS) then can be derived from the choice probability. After all, a multi-objective model is constructed to maximise the EMS and minimise the total engineering cost. The candidate Pareto-optimal solutions can be obtained by solving the optimisation model. Then a membership function is defined to select the optimal solution from the Pareto-optimal solutions. A case study for optimising the smartphone's specifications is conducted to demonstrate the effectiveness of the newly developed approach. Compared with the commonly used Conjoint Analysis (CA) method in determining the most desired levels for product specifications, the proposed data-driven method can avoid the situation where the user's preferences are irrational, making the proposed method be more practical in measuring customer preferences than the utility-based model.
doi_str_mv 10.1080/00207543.2018.1480843
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2189155935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2189155935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-6e41b1803055831e2cf204bbdb8ee3dc22440a43c01fc6e879285af26747bc13</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QQh43prP3ezNUmoVCl568Bay2YSmtJs1SZX-e7NuxZtzmcM878zwAHCP0QwjgR4RIqjijM4IwmKGmUCC0QswwbQsCy7E-yWYDEwxQNfgJsYdysUFm4DlHLYqqaIN7tN0UPV98EpvofUBpq2Bvk_u4KJKznfQW5jH7VEnGHujnXX6ZxBvwZVV-2juzn0KNs_LzeKlWL-tXhfzdaFpzVNRGoYbLBBFnAuKDdGWINY0bSOMoa0mhDGkGNUIW10aUdVEcGVJWbGq0ZhOwcO4Nn_xcTQxyZ0_hi5flASLGnNeU54pPlI6-BiDsbIP7qDCSWIkB2HyV5gchMmzsJyDY85o37n4lyprWuLhiYw8jYjrsqCD-vJh38qkTnsfbFCdzjH6_5VvuAN7mQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2189155935</pqid></control><display><type>article</type><title>A data-driven approach for the optimisation of product specifications</title><source>Taylor &amp; Francis</source><source>EBSCOhost Business Source Complete</source><creator>Zhang, Lei ; Chu, Xuening ; Chen, Hansi ; Yan, Bo</creator><creatorcontrib>Zhang, Lei ; Chu, Xuening ; Chen, Hansi ; Yan, Bo</creatorcontrib><description>In order to develop the profit-maximising, market share-maximising or cost-minimising bundle of product engineering specifications with proper performance levels, an optimisation model driven by operating data is proposed. The operating data are input as the sources to conduct the optimisation and a data-based customer satisfaction function can be formed. Then, a customer choice model developed from the customer satisfaction is constructed to estimate the customer choice probability. The expected market share (EMS) then can be derived from the choice probability. After all, a multi-objective model is constructed to maximise the EMS and minimise the total engineering cost. The candidate Pareto-optimal solutions can be obtained by solving the optimisation model. Then a membership function is defined to select the optimal solution from the Pareto-optimal solutions. A case study for optimising the smartphone's specifications is conducted to demonstrate the effectiveness of the newly developed approach. Compared with the commonly used Conjoint Analysis (CA) method in determining the most desired levels for product specifications, the proposed data-driven method can avoid the situation where the user's preferences are irrational, making the proposed method be more practical in measuring customer preferences than the utility-based model.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207543.2018.1480843</identifier><language>eng</language><publisher>London: Taylor &amp; Francis</publisher><subject>conjoint analysis ; customer choice model ; Customer satisfaction ; customer satisfaction function ; Market shares ; Markets ; Maximization ; Multiple objective analysis ; operating data ; Pareto optimization ; Pareto optimum ; product optimisation ; Product specifications ; Smartphones</subject><ispartof>International journal of production research, 2019-02, Vol.57 (3), p.703-721</ispartof><rights>2018 Informa UK Limited, trading as Taylor &amp; Francis Group 2018</rights><rights>2018 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-6e41b1803055831e2cf204bbdb8ee3dc22440a43c01fc6e879285af26747bc13</citedby><cites>FETCH-LOGICAL-c395t-6e41b1803055831e2cf204bbdb8ee3dc22440a43c01fc6e879285af26747bc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207543.2018.1480843$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207543.2018.1480843$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Chu, Xuening</creatorcontrib><creatorcontrib>Chen, Hansi</creatorcontrib><creatorcontrib>Yan, Bo</creatorcontrib><title>A data-driven approach for the optimisation of product specifications</title><title>International journal of production research</title><description>In order to develop the profit-maximising, market share-maximising or cost-minimising bundle of product engineering specifications with proper performance levels, an optimisation model driven by operating data is proposed. The operating data are input as the sources to conduct the optimisation and a data-based customer satisfaction function can be formed. Then, a customer choice model developed from the customer satisfaction is constructed to estimate the customer choice probability. The expected market share (EMS) then can be derived from the choice probability. After all, a multi-objective model is constructed to maximise the EMS and minimise the total engineering cost. The candidate Pareto-optimal solutions can be obtained by solving the optimisation model. Then a membership function is defined to select the optimal solution from the Pareto-optimal solutions. A case study for optimising the smartphone's specifications is conducted to demonstrate the effectiveness of the newly developed approach. Compared with the commonly used Conjoint Analysis (CA) method in determining the most desired levels for product specifications, the proposed data-driven method can avoid the situation where the user's preferences are irrational, making the proposed method be more practical in measuring customer preferences than the utility-based model.</description><subject>conjoint analysis</subject><subject>customer choice model</subject><subject>Customer satisfaction</subject><subject>customer satisfaction function</subject><subject>Market shares</subject><subject>Markets</subject><subject>Maximization</subject><subject>Multiple objective analysis</subject><subject>operating data</subject><subject>Pareto optimization</subject><subject>Pareto optimum</subject><subject>product optimisation</subject><subject>Product specifications</subject><subject>Smartphones</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_QQh43prP3ezNUmoVCl568Bay2YSmtJs1SZX-e7NuxZtzmcM878zwAHCP0QwjgR4RIqjijM4IwmKGmUCC0QswwbQsCy7E-yWYDEwxQNfgJsYdysUFm4DlHLYqqaIN7tN0UPV98EpvofUBpq2Bvk_u4KJKznfQW5jH7VEnGHujnXX6ZxBvwZVV-2juzn0KNs_LzeKlWL-tXhfzdaFpzVNRGoYbLBBFnAuKDdGWINY0bSOMoa0mhDGkGNUIW10aUdVEcGVJWbGq0ZhOwcO4Nn_xcTQxyZ0_hi5flASLGnNeU54pPlI6-BiDsbIP7qDCSWIkB2HyV5gchMmzsJyDY85o37n4lyprWuLhiYw8jYjrsqCD-vJh38qkTnsfbFCdzjH6_5VvuAN7mQ</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Zhang, Lei</creator><creator>Chu, Xuening</creator><creator>Chen, Hansi</creator><creator>Yan, Bo</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis LLC</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190201</creationdate><title>A data-driven approach for the optimisation of product specifications</title><author>Zhang, Lei ; Chu, Xuening ; Chen, Hansi ; Yan, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-6e41b1803055831e2cf204bbdb8ee3dc22440a43c01fc6e879285af26747bc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>conjoint analysis</topic><topic>customer choice model</topic><topic>Customer satisfaction</topic><topic>customer satisfaction function</topic><topic>Market shares</topic><topic>Markets</topic><topic>Maximization</topic><topic>Multiple objective analysis</topic><topic>operating data</topic><topic>Pareto optimization</topic><topic>Pareto optimum</topic><topic>product optimisation</topic><topic>Product specifications</topic><topic>Smartphones</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Chu, Xuening</creatorcontrib><creatorcontrib>Chen, Hansi</creatorcontrib><creatorcontrib>Yan, Bo</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Lei</au><au>Chu, Xuening</au><au>Chen, Hansi</au><au>Yan, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A data-driven approach for the optimisation of product specifications</atitle><jtitle>International journal of production research</jtitle><date>2019-02-01</date><risdate>2019</risdate><volume>57</volume><issue>3</issue><spage>703</spage><epage>721</epage><pages>703-721</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><abstract>In order to develop the profit-maximising, market share-maximising or cost-minimising bundle of product engineering specifications with proper performance levels, an optimisation model driven by operating data is proposed. The operating data are input as the sources to conduct the optimisation and a data-based customer satisfaction function can be formed. Then, a customer choice model developed from the customer satisfaction is constructed to estimate the customer choice probability. The expected market share (EMS) then can be derived from the choice probability. After all, a multi-objective model is constructed to maximise the EMS and minimise the total engineering cost. The candidate Pareto-optimal solutions can be obtained by solving the optimisation model. Then a membership function is defined to select the optimal solution from the Pareto-optimal solutions. A case study for optimising the smartphone's specifications is conducted to demonstrate the effectiveness of the newly developed approach. Compared with the commonly used Conjoint Analysis (CA) method in determining the most desired levels for product specifications, the proposed data-driven method can avoid the situation where the user's preferences are irrational, making the proposed method be more practical in measuring customer preferences than the utility-based model.</abstract><cop>London</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00207543.2018.1480843</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7543
ispartof International journal of production research, 2019-02, Vol.57 (3), p.703-721
issn 0020-7543
1366-588X
language eng
recordid cdi_proquest_journals_2189155935
source Taylor & Francis; EBSCOhost Business Source Complete
subjects conjoint analysis
customer choice model
Customer satisfaction
customer satisfaction function
Market shares
Markets
Maximization
Multiple objective analysis
operating data
Pareto optimization
Pareto optimum
product optimisation
Product specifications
Smartphones
title A data-driven approach for the optimisation of product specifications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T02%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20data-driven%20approach%20for%20the%20optimisation%20of%20product%20specifications&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Zhang,%20Lei&rft.date=2019-02-01&rft.volume=57&rft.issue=3&rft.spage=703&rft.epage=721&rft.pages=703-721&rft.issn=0020-7543&rft.eissn=1366-588X&rft_id=info:doi/10.1080/00207543.2018.1480843&rft_dat=%3Cproquest_infor%3E2189155935%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2189155935&rft_id=info:pmid/&rfr_iscdi=true