A data-driven approach for the optimisation of product specifications
In order to develop the profit-maximising, market share-maximising or cost-minimising bundle of product engineering specifications with proper performance levels, an optimisation model driven by operating data is proposed. The operating data are input as the sources to conduct the optimisation and a...
Gespeichert in:
Veröffentlicht in: | International journal of production research 2019-02, Vol.57 (3), p.703-721 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 721 |
---|---|
container_issue | 3 |
container_start_page | 703 |
container_title | International journal of production research |
container_volume | 57 |
creator | Zhang, Lei Chu, Xuening Chen, Hansi Yan, Bo |
description | In order to develop the profit-maximising, market share-maximising or cost-minimising bundle of product engineering specifications with proper performance levels, an optimisation model driven by operating data is proposed. The operating data are input as the sources to conduct the optimisation and a data-based customer satisfaction function can be formed. Then, a customer choice model developed from the customer satisfaction is constructed to estimate the customer choice probability. The expected market share (EMS) then can be derived from the choice probability. After all, a multi-objective model is constructed to maximise the EMS and minimise the total engineering cost. The candidate Pareto-optimal solutions can be obtained by solving the optimisation model. Then a membership function is defined to select the optimal solution from the Pareto-optimal solutions. A case study for optimising the smartphone's specifications is conducted to demonstrate the effectiveness of the newly developed approach. Compared with the commonly used Conjoint Analysis (CA) method in determining the most desired levels for product specifications, the proposed data-driven method can avoid the situation where the user's preferences are irrational, making the proposed method be more practical in measuring customer preferences than the utility-based model. |
doi_str_mv | 10.1080/00207543.2018.1480843 |
format | Article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2189155935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2189155935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-6e41b1803055831e2cf204bbdb8ee3dc22440a43c01fc6e879285af26747bc13</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QQh43prP3ezNUmoVCl568Bay2YSmtJs1SZX-e7NuxZtzmcM878zwAHCP0QwjgR4RIqjijM4IwmKGmUCC0QswwbQsCy7E-yWYDEwxQNfgJsYdysUFm4DlHLYqqaIN7tN0UPV98EpvofUBpq2Bvk_u4KJKznfQW5jH7VEnGHujnXX6ZxBvwZVV-2juzn0KNs_LzeKlWL-tXhfzdaFpzVNRGoYbLBBFnAuKDdGWINY0bSOMoa0mhDGkGNUIW10aUdVEcGVJWbGq0ZhOwcO4Nn_xcTQxyZ0_hi5flASLGnNeU54pPlI6-BiDsbIP7qDCSWIkB2HyV5gchMmzsJyDY85o37n4lyprWuLhiYw8jYjrsqCD-vJh38qkTnsfbFCdzjH6_5VvuAN7mQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2189155935</pqid></control><display><type>article</type><title>A data-driven approach for the optimisation of product specifications</title><source>Taylor & Francis</source><source>EBSCOhost Business Source Complete</source><creator>Zhang, Lei ; Chu, Xuening ; Chen, Hansi ; Yan, Bo</creator><creatorcontrib>Zhang, Lei ; Chu, Xuening ; Chen, Hansi ; Yan, Bo</creatorcontrib><description>In order to develop the profit-maximising, market share-maximising or cost-minimising bundle of product engineering specifications with proper performance levels, an optimisation model driven by operating data is proposed. The operating data are input as the sources to conduct the optimisation and a data-based customer satisfaction function can be formed. Then, a customer choice model developed from the customer satisfaction is constructed to estimate the customer choice probability. The expected market share (EMS) then can be derived from the choice probability. After all, a multi-objective model is constructed to maximise the EMS and minimise the total engineering cost. The candidate Pareto-optimal solutions can be obtained by solving the optimisation model. Then a membership function is defined to select the optimal solution from the Pareto-optimal solutions. A case study for optimising the smartphone's specifications is conducted to demonstrate the effectiveness of the newly developed approach. Compared with the commonly used Conjoint Analysis (CA) method in determining the most desired levels for product specifications, the proposed data-driven method can avoid the situation where the user's preferences are irrational, making the proposed method be more practical in measuring customer preferences than the utility-based model.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207543.2018.1480843</identifier><language>eng</language><publisher>London: Taylor & Francis</publisher><subject>conjoint analysis ; customer choice model ; Customer satisfaction ; customer satisfaction function ; Market shares ; Markets ; Maximization ; Multiple objective analysis ; operating data ; Pareto optimization ; Pareto optimum ; product optimisation ; Product specifications ; Smartphones</subject><ispartof>International journal of production research, 2019-02, Vol.57 (3), p.703-721</ispartof><rights>2018 Informa UK Limited, trading as Taylor & Francis Group 2018</rights><rights>2018 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-6e41b1803055831e2cf204bbdb8ee3dc22440a43c01fc6e879285af26747bc13</citedby><cites>FETCH-LOGICAL-c395t-6e41b1803055831e2cf204bbdb8ee3dc22440a43c01fc6e879285af26747bc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207543.2018.1480843$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207543.2018.1480843$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Chu, Xuening</creatorcontrib><creatorcontrib>Chen, Hansi</creatorcontrib><creatorcontrib>Yan, Bo</creatorcontrib><title>A data-driven approach for the optimisation of product specifications</title><title>International journal of production research</title><description>In order to develop the profit-maximising, market share-maximising or cost-minimising bundle of product engineering specifications with proper performance levels, an optimisation model driven by operating data is proposed. The operating data are input as the sources to conduct the optimisation and a data-based customer satisfaction function can be formed. Then, a customer choice model developed from the customer satisfaction is constructed to estimate the customer choice probability. The expected market share (EMS) then can be derived from the choice probability. After all, a multi-objective model is constructed to maximise the EMS and minimise the total engineering cost. The candidate Pareto-optimal solutions can be obtained by solving the optimisation model. Then a membership function is defined to select the optimal solution from the Pareto-optimal solutions. A case study for optimising the smartphone's specifications is conducted to demonstrate the effectiveness of the newly developed approach. Compared with the commonly used Conjoint Analysis (CA) method in determining the most desired levels for product specifications, the proposed data-driven method can avoid the situation where the user's preferences are irrational, making the proposed method be more practical in measuring customer preferences than the utility-based model.</description><subject>conjoint analysis</subject><subject>customer choice model</subject><subject>Customer satisfaction</subject><subject>customer satisfaction function</subject><subject>Market shares</subject><subject>Markets</subject><subject>Maximization</subject><subject>Multiple objective analysis</subject><subject>operating data</subject><subject>Pareto optimization</subject><subject>Pareto optimum</subject><subject>product optimisation</subject><subject>Product specifications</subject><subject>Smartphones</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_QQh43prP3ezNUmoVCl568Bay2YSmtJs1SZX-e7NuxZtzmcM878zwAHCP0QwjgR4RIqjijM4IwmKGmUCC0QswwbQsCy7E-yWYDEwxQNfgJsYdysUFm4DlHLYqqaIN7tN0UPV98EpvofUBpq2Bvk_u4KJKznfQW5jH7VEnGHujnXX6ZxBvwZVV-2juzn0KNs_LzeKlWL-tXhfzdaFpzVNRGoYbLBBFnAuKDdGWINY0bSOMoa0mhDGkGNUIW10aUdVEcGVJWbGq0ZhOwcO4Nn_xcTQxyZ0_hi5flASLGnNeU54pPlI6-BiDsbIP7qDCSWIkB2HyV5gchMmzsJyDY85o37n4lyprWuLhiYw8jYjrsqCD-vJh38qkTnsfbFCdzjH6_5VvuAN7mQ</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Zhang, Lei</creator><creator>Chu, Xuening</creator><creator>Chen, Hansi</creator><creator>Yan, Bo</creator><general>Taylor & Francis</general><general>Taylor & Francis LLC</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190201</creationdate><title>A data-driven approach for the optimisation of product specifications</title><author>Zhang, Lei ; Chu, Xuening ; Chen, Hansi ; Yan, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-6e41b1803055831e2cf204bbdb8ee3dc22440a43c01fc6e879285af26747bc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>conjoint analysis</topic><topic>customer choice model</topic><topic>Customer satisfaction</topic><topic>customer satisfaction function</topic><topic>Market shares</topic><topic>Markets</topic><topic>Maximization</topic><topic>Multiple objective analysis</topic><topic>operating data</topic><topic>Pareto optimization</topic><topic>Pareto optimum</topic><topic>product optimisation</topic><topic>Product specifications</topic><topic>Smartphones</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Chu, Xuening</creatorcontrib><creatorcontrib>Chen, Hansi</creatorcontrib><creatorcontrib>Yan, Bo</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Lei</au><au>Chu, Xuening</au><au>Chen, Hansi</au><au>Yan, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A data-driven approach for the optimisation of product specifications</atitle><jtitle>International journal of production research</jtitle><date>2019-02-01</date><risdate>2019</risdate><volume>57</volume><issue>3</issue><spage>703</spage><epage>721</epage><pages>703-721</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><abstract>In order to develop the profit-maximising, market share-maximising or cost-minimising bundle of product engineering specifications with proper performance levels, an optimisation model driven by operating data is proposed. The operating data are input as the sources to conduct the optimisation and a data-based customer satisfaction function can be formed. Then, a customer choice model developed from the customer satisfaction is constructed to estimate the customer choice probability. The expected market share (EMS) then can be derived from the choice probability. After all, a multi-objective model is constructed to maximise the EMS and minimise the total engineering cost. The candidate Pareto-optimal solutions can be obtained by solving the optimisation model. Then a membership function is defined to select the optimal solution from the Pareto-optimal solutions. A case study for optimising the smartphone's specifications is conducted to demonstrate the effectiveness of the newly developed approach. Compared with the commonly used Conjoint Analysis (CA) method in determining the most desired levels for product specifications, the proposed data-driven method can avoid the situation where the user's preferences are irrational, making the proposed method be more practical in measuring customer preferences than the utility-based model.</abstract><cop>London</cop><pub>Taylor & Francis</pub><doi>10.1080/00207543.2018.1480843</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7543 |
ispartof | International journal of production research, 2019-02, Vol.57 (3), p.703-721 |
issn | 0020-7543 1366-588X |
language | eng |
recordid | cdi_proquest_journals_2189155935 |
source | Taylor & Francis; EBSCOhost Business Source Complete |
subjects | conjoint analysis customer choice model Customer satisfaction customer satisfaction function Market shares Markets Maximization Multiple objective analysis operating data Pareto optimization Pareto optimum product optimisation Product specifications Smartphones |
title | A data-driven approach for the optimisation of product specifications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T02%3A16%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20data-driven%20approach%20for%20the%20optimisation%20of%20product%20specifications&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Zhang,%20Lei&rft.date=2019-02-01&rft.volume=57&rft.issue=3&rft.spage=703&rft.epage=721&rft.pages=703-721&rft.issn=0020-7543&rft.eissn=1366-588X&rft_id=info:doi/10.1080/00207543.2018.1480843&rft_dat=%3Cproquest_infor%3E2189155935%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2189155935&rft_id=info:pmid/&rfr_iscdi=true |