Dislocation structure and microstrain evolution during spinodal decomposition of reactive magnetron sputtered heteroepixatial c-(Ti0.37,Al0.63)N/c-TiN films grown on MgO(001) and (111) substrates
Heteroepitaxial c-(Ti0.37,Al0.63)N thin films were grown on MgO(001) and MgO(111) substrates using reactive magnetron sputtering. High resolution high-angle annular dark-field scanning transmission electron micrographs show coherency between the film and the substrate. In the as-deposited state, x-r...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2019-03, Vol.125 (10) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 125 |
creator | Calamba, K. M. Pierson, J. F. Bruyère, S. Febvrier, A. L. Eklund, P. Barrirero, J. Mücklich, F. Boyd, R. Johansson Jõesaar, M. P. Odén, M. |
description | Heteroepitaxial c-(Ti0.37,Al0.63)N thin films were grown on MgO(001) and MgO(111) substrates using reactive magnetron sputtering. High resolution high-angle annular dark-field scanning transmission electron micrographs show coherency between the film and the substrate. In the as-deposited state, x-ray diffraction reciprocal space maps show a strained epitaxial film. Corresponding geometric phase analysis (GPA) deformation maps show a high stress in the film. At elevated temperature (900 °C), the films decompose to form iso-structural coherent c-AlN- and c-TiN-rich domains, elongated along the elastically soft directions. GPA analysis reveals that the c-TiN domains accommodate more dislocations than the c-AlN domains. This is because of the stronger directionality of the covalent bonds in c-AlN compared with c-TiN, making it more favorable for the dislocations to accumulate in c-TiN. The defect structure and strain generation in c-(Ti,Al)N during spinodal decomposition is affected by the chemical bonding state and elastic properties of the segregated domains. |
doi_str_mv | 10.1063/1.5051609 |
format | Article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_proquest_journals_2189113520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2189113520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-20e89a8bbd9e6fb31fde31784e14eee5640edc541c7755b0190e99dc3a1b1be3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEEkvhwD-wxGW3araedZzEx1XLR6XSXlZcLceZBFfZOPhjC7-PP4b3Q-0BCU4zsh-_83pmsuw90CXQkl3CklMOJRUvshnQWuQV5_RlNqN0BXktKvE6e-P9A6UANROz7Pe18YPVKhg7Eh9c1CE6JGpsydZoZ9ORMiPBnR3igWmjM2NP_GRG26qBtKjtdrLeHG5tRxwqHcwOyVb1Iwa3151iCOiwJd8xRYuT-Zkqptc6n28MXbLqYj3QZckWd5c635g70plh60nv7GMSHcnX_n6ePC8OxuYAKfOx2ZsL6N9mrzo1eHx3imfZ5tPHzdWX_Pb-883V-jbXRVmHfEWxFqpumlZg2TUMuhYZVHWBUCAiLwuKreYF6Co1raEgKArRaqaggQbZWXZxlPWPOMVGTs5slfslrTLy2nxbS-t6GaPkrCrLMuH5__HBRAmc17VI_IcjPzn7I6IP8sFGN6YPyRXUAoDxFU3U4kjtZ-Mddk-6QOV-AyTI0wYk9vzkQJtwmPATvLPuGZRT2_0L_lv5D-HawWE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2189113520</pqid></control><display><type>article</type><title>Dislocation structure and microstrain evolution during spinodal decomposition of reactive magnetron sputtered heteroepixatial c-(Ti0.37,Al0.63)N/c-TiN films grown on MgO(001) and (111) substrates</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Calamba, K. M. ; Pierson, J. F. ; Bruyère, S. ; Febvrier, A. L. ; Eklund, P. ; Barrirero, J. ; Mücklich, F. ; Boyd, R. ; Johansson Jõesaar, M. P. ; Odén, M.</creator><creatorcontrib>Calamba, K. M. ; Pierson, J. F. ; Bruyère, S. ; Febvrier, A. L. ; Eklund, P. ; Barrirero, J. ; Mücklich, F. ; Boyd, R. ; Johansson Jõesaar, M. P. ; Odén, M.</creatorcontrib><description>Heteroepitaxial c-(Ti0.37,Al0.63)N thin films were grown on MgO(001) and MgO(111) substrates using reactive magnetron sputtering. High resolution high-angle annular dark-field scanning transmission electron micrographs show coherency between the film and the substrate. In the as-deposited state, x-ray diffraction reciprocal space maps show a strained epitaxial film. Corresponding geometric phase analysis (GPA) deformation maps show a high stress in the film. At elevated temperature (900 °C), the films decompose to form iso-structural coherent c-AlN- and c-TiN-rich domains, elongated along the elastically soft directions. GPA analysis reveals that the c-TiN domains accommodate more dislocations than the c-AlN domains. This is because of the stronger directionality of the covalent bonds in c-AlN compared with c-TiN, making it more favorable for the dislocations to accumulate in c-TiN. The defect structure and strain generation in c-(Ti,Al)N during spinodal decomposition is affected by the chemical bonding state and elastic properties of the segregated domains.</description><identifier>ISSN: 0021-8979</identifier><identifier>ISSN: 1089-7550</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5051609</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum nitride ; Applied physics ; Bonding strength ; Chemical bonds ; Covalent bonds ; Decomposition reactions ; Deformation analysis ; Dislocations ; Domains ; Elastic properties ; Electron micrographs ; Elongated structure ; High temperature ; Magnesium oxide ; Magnetron sputtering ; Microstrain ; Organic chemistry ; Spinodal decomposition ; Substrates ; Thin films ; Titanium nitride ; X-ray diffraction</subject><ispartof>Journal of applied physics, 2019-03, Vol.125 (10)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-20e89a8bbd9e6fb31fde31784e14eee5640edc541c7755b0190e99dc3a1b1be3</citedby><cites>FETCH-LOGICAL-c468t-20e89a8bbd9e6fb31fde31784e14eee5640edc541c7755b0190e99dc3a1b1be3</cites><orcidid>0000-0002-2286-5588 ; 0000-0002-3059-7392 ; 0000-0003-1785-0864 ; 0000-0001-7160-4520 ; 0000-0001-9661-1495 ; 0000-0001-8790-3162</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5051609$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4510,27922,27923,76154</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-155889$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-537666$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Calamba, K. M.</creatorcontrib><creatorcontrib>Pierson, J. F.</creatorcontrib><creatorcontrib>Bruyère, S.</creatorcontrib><creatorcontrib>Febvrier, A. L.</creatorcontrib><creatorcontrib>Eklund, P.</creatorcontrib><creatorcontrib>Barrirero, J.</creatorcontrib><creatorcontrib>Mücklich, F.</creatorcontrib><creatorcontrib>Boyd, R.</creatorcontrib><creatorcontrib>Johansson Jõesaar, M. P.</creatorcontrib><creatorcontrib>Odén, M.</creatorcontrib><title>Dislocation structure and microstrain evolution during spinodal decomposition of reactive magnetron sputtered heteroepixatial c-(Ti0.37,Al0.63)N/c-TiN films grown on MgO(001) and (111) substrates</title><title>Journal of applied physics</title><description>Heteroepitaxial c-(Ti0.37,Al0.63)N thin films were grown on MgO(001) and MgO(111) substrates using reactive magnetron sputtering. High resolution high-angle annular dark-field scanning transmission electron micrographs show coherency between the film and the substrate. In the as-deposited state, x-ray diffraction reciprocal space maps show a strained epitaxial film. Corresponding geometric phase analysis (GPA) deformation maps show a high stress in the film. At elevated temperature (900 °C), the films decompose to form iso-structural coherent c-AlN- and c-TiN-rich domains, elongated along the elastically soft directions. GPA analysis reveals that the c-TiN domains accommodate more dislocations than the c-AlN domains. This is because of the stronger directionality of the covalent bonds in c-AlN compared with c-TiN, making it more favorable for the dislocations to accumulate in c-TiN. The defect structure and strain generation in c-(Ti,Al)N during spinodal decomposition is affected by the chemical bonding state and elastic properties of the segregated domains.</description><subject>Aluminum nitride</subject><subject>Applied physics</subject><subject>Bonding strength</subject><subject>Chemical bonds</subject><subject>Covalent bonds</subject><subject>Decomposition reactions</subject><subject>Deformation analysis</subject><subject>Dislocations</subject><subject>Domains</subject><subject>Elastic properties</subject><subject>Electron micrographs</subject><subject>Elongated structure</subject><subject>High temperature</subject><subject>Magnesium oxide</subject><subject>Magnetron sputtering</subject><subject>Microstrain</subject><subject>Organic chemistry</subject><subject>Spinodal decomposition</subject><subject>Substrates</subject><subject>Thin films</subject><subject>Titanium nitride</subject><subject>X-ray diffraction</subject><issn>0021-8979</issn><issn>1089-7550</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkk1v1DAQhiMEEkvhwD-wxGW3araedZzEx1XLR6XSXlZcLceZBFfZOPhjC7-PP4b3Q-0BCU4zsh-_83pmsuw90CXQkl3CklMOJRUvshnQWuQV5_RlNqN0BXktKvE6e-P9A6UANROz7Pe18YPVKhg7Eh9c1CE6JGpsydZoZ9ORMiPBnR3igWmjM2NP_GRG26qBtKjtdrLeHG5tRxwqHcwOyVb1Iwa3151iCOiwJd8xRYuT-Zkqptc6n28MXbLqYj3QZckWd5c635g70plh60nv7GMSHcnX_n6ePC8OxuYAKfOx2ZsL6N9mrzo1eHx3imfZ5tPHzdWX_Pb-883V-jbXRVmHfEWxFqpumlZg2TUMuhYZVHWBUCAiLwuKreYF6Co1raEgKArRaqaggQbZWXZxlPWPOMVGTs5slfslrTLy2nxbS-t6GaPkrCrLMuH5__HBRAmc17VI_IcjPzn7I6IP8sFGN6YPyRXUAoDxFU3U4kjtZ-Mddk-6QOV-AyTI0wYk9vzkQJtwmPATvLPuGZRT2_0L_lv5D-HawWE</recordid><startdate>20190314</startdate><enddate>20190314</enddate><creator>Calamba, K. M.</creator><creator>Pierson, J. F.</creator><creator>Bruyère, S.</creator><creator>Febvrier, A. L.</creator><creator>Eklund, P.</creator><creator>Barrirero, J.</creator><creator>Mücklich, F.</creator><creator>Boyd, R.</creator><creator>Johansson Jõesaar, M. P.</creator><creator>Odén, M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG8</scope><scope>DF2</scope><orcidid>https://orcid.org/0000-0002-2286-5588</orcidid><orcidid>https://orcid.org/0000-0002-3059-7392</orcidid><orcidid>https://orcid.org/0000-0003-1785-0864</orcidid><orcidid>https://orcid.org/0000-0001-7160-4520</orcidid><orcidid>https://orcid.org/0000-0001-9661-1495</orcidid><orcidid>https://orcid.org/0000-0001-8790-3162</orcidid></search><sort><creationdate>20190314</creationdate><title>Dislocation structure and microstrain evolution during spinodal decomposition of reactive magnetron sputtered heteroepixatial c-(Ti0.37,Al0.63)N/c-TiN films grown on MgO(001) and (111) substrates</title><author>Calamba, K. M. ; Pierson, J. F. ; Bruyère, S. ; Febvrier, A. L. ; Eklund, P. ; Barrirero, J. ; Mücklich, F. ; Boyd, R. ; Johansson Jõesaar, M. P. ; Odén, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-20e89a8bbd9e6fb31fde31784e14eee5640edc541c7755b0190e99dc3a1b1be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum nitride</topic><topic>Applied physics</topic><topic>Bonding strength</topic><topic>Chemical bonds</topic><topic>Covalent bonds</topic><topic>Decomposition reactions</topic><topic>Deformation analysis</topic><topic>Dislocations</topic><topic>Domains</topic><topic>Elastic properties</topic><topic>Electron micrographs</topic><topic>Elongated structure</topic><topic>High temperature</topic><topic>Magnesium oxide</topic><topic>Magnetron sputtering</topic><topic>Microstrain</topic><topic>Organic chemistry</topic><topic>Spinodal decomposition</topic><topic>Substrates</topic><topic>Thin films</topic><topic>Titanium nitride</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calamba, K. M.</creatorcontrib><creatorcontrib>Pierson, J. F.</creatorcontrib><creatorcontrib>Bruyère, S.</creatorcontrib><creatorcontrib>Febvrier, A. L.</creatorcontrib><creatorcontrib>Eklund, P.</creatorcontrib><creatorcontrib>Barrirero, J.</creatorcontrib><creatorcontrib>Mücklich, F.</creatorcontrib><creatorcontrib>Boyd, R.</creatorcontrib><creatorcontrib>Johansson Jõesaar, M. P.</creatorcontrib><creatorcontrib>Odén, M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linköpings universitet</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calamba, K. M.</au><au>Pierson, J. F.</au><au>Bruyère, S.</au><au>Febvrier, A. L.</au><au>Eklund, P.</au><au>Barrirero, J.</au><au>Mücklich, F.</au><au>Boyd, R.</au><au>Johansson Jõesaar, M. P.</au><au>Odén, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dislocation structure and microstrain evolution during spinodal decomposition of reactive magnetron sputtered heteroepixatial c-(Ti0.37,Al0.63)N/c-TiN films grown on MgO(001) and (111) substrates</atitle><jtitle>Journal of applied physics</jtitle><date>2019-03-14</date><risdate>2019</risdate><volume>125</volume><issue>10</issue><issn>0021-8979</issn><issn>1089-7550</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Heteroepitaxial c-(Ti0.37,Al0.63)N thin films were grown on MgO(001) and MgO(111) substrates using reactive magnetron sputtering. High resolution high-angle annular dark-field scanning transmission electron micrographs show coherency between the film and the substrate. In the as-deposited state, x-ray diffraction reciprocal space maps show a strained epitaxial film. Corresponding geometric phase analysis (GPA) deformation maps show a high stress in the film. At elevated temperature (900 °C), the films decompose to form iso-structural coherent c-AlN- and c-TiN-rich domains, elongated along the elastically soft directions. GPA analysis reveals that the c-TiN domains accommodate more dislocations than the c-AlN domains. This is because of the stronger directionality of the covalent bonds in c-AlN compared with c-TiN, making it more favorable for the dislocations to accumulate in c-TiN. The defect structure and strain generation in c-(Ti,Al)N during spinodal decomposition is affected by the chemical bonding state and elastic properties of the segregated domains.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5051609</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2286-5588</orcidid><orcidid>https://orcid.org/0000-0002-3059-7392</orcidid><orcidid>https://orcid.org/0000-0003-1785-0864</orcidid><orcidid>https://orcid.org/0000-0001-7160-4520</orcidid><orcidid>https://orcid.org/0000-0001-9661-1495</orcidid><orcidid>https://orcid.org/0000-0001-8790-3162</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2019-03, Vol.125 (10) |
issn | 0021-8979 1089-7550 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2189113520 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Aluminum nitride Applied physics Bonding strength Chemical bonds Covalent bonds Decomposition reactions Deformation analysis Dislocations Domains Elastic properties Electron micrographs Elongated structure High temperature Magnesium oxide Magnetron sputtering Microstrain Organic chemistry Spinodal decomposition Substrates Thin films Titanium nitride X-ray diffraction |
title | Dislocation structure and microstrain evolution during spinodal decomposition of reactive magnetron sputtered heteroepixatial c-(Ti0.37,Al0.63)N/c-TiN films grown on MgO(001) and (111) substrates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A18%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dislocation%20structure%20and%20microstrain%20evolution%20during%20spinodal%20decomposition%20of%20reactive%20magnetron%20sputtered%20heteroepixatial%20c-(Ti0.37,Al0.63)N/c-TiN%20films%20grown%20on%20MgO(001)%20and%20(111)%20substrates&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Calamba,%20K.%20M.&rft.date=2019-03-14&rft.volume=125&rft.issue=10&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5051609&rft_dat=%3Cproquest_swepu%3E2189113520%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2189113520&rft_id=info:pmid/&rfr_iscdi=true |