Dislocation structure and microstrain evolution during spinodal decomposition of reactive magnetron sputtered heteroepixatial c-(Ti0.37,Al0.63)N/c-TiN films grown on MgO(001) and (111) substrates

Heteroepitaxial c-(Ti0.37,Al0.63)N thin films were grown on MgO(001) and MgO(111) substrates using reactive magnetron sputtering. High resolution high-angle annular dark-field scanning transmission electron micrographs show coherency between the film and the substrate. In the as-deposited state, x-r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2019-03, Vol.125 (10)
Hauptverfasser: Calamba, K. M., Pierson, J. F., Bruyère, S., Febvrier, A. L., Eklund, P., Barrirero, J., Mücklich, F., Boyd, R., Johansson Jõesaar, M. P., Odén, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Journal of applied physics
container_volume 125
creator Calamba, K. M.
Pierson, J. F.
Bruyère, S.
Febvrier, A. L.
Eklund, P.
Barrirero, J.
Mücklich, F.
Boyd, R.
Johansson Jõesaar, M. P.
Odén, M.
description Heteroepitaxial c-(Ti0.37,Al0.63)N thin films were grown on MgO(001) and MgO(111) substrates using reactive magnetron sputtering. High resolution high-angle annular dark-field scanning transmission electron micrographs show coherency between the film and the substrate. In the as-deposited state, x-ray diffraction reciprocal space maps show a strained epitaxial film. Corresponding geometric phase analysis (GPA) deformation maps show a high stress in the film. At elevated temperature (900 °C), the films decompose to form iso-structural coherent c-AlN- and c-TiN-rich domains, elongated along the elastically soft directions. GPA analysis reveals that the c-TiN domains accommodate more dislocations than the c-AlN domains. This is because of the stronger directionality of the covalent bonds in c-AlN compared with c-TiN, making it more favorable for the dislocations to accumulate in c-TiN. The defect structure and strain generation in c-(Ti,Al)N during spinodal decomposition is affected by the chemical bonding state and elastic properties of the segregated domains.
doi_str_mv 10.1063/1.5051609
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_proquest_journals_2189113520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2189113520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-20e89a8bbd9e6fb31fde31784e14eee5640edc541c7755b0190e99dc3a1b1be3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEEkvhwD-wxGW3araedZzEx1XLR6XSXlZcLceZBFfZOPhjC7-PP4b3Q-0BCU4zsh-_83pmsuw90CXQkl3CklMOJRUvshnQWuQV5_RlNqN0BXktKvE6e-P9A6UANROz7Pe18YPVKhg7Eh9c1CE6JGpsydZoZ9ORMiPBnR3igWmjM2NP_GRG26qBtKjtdrLeHG5tRxwqHcwOyVb1Iwa3151iCOiwJd8xRYuT-Zkqptc6n28MXbLqYj3QZckWd5c635g70plh60nv7GMSHcnX_n6ePC8OxuYAKfOx2ZsL6N9mrzo1eHx3imfZ5tPHzdWX_Pb-883V-jbXRVmHfEWxFqpumlZg2TUMuhYZVHWBUCAiLwuKreYF6Co1raEgKArRaqaggQbZWXZxlPWPOMVGTs5slfslrTLy2nxbS-t6GaPkrCrLMuH5__HBRAmc17VI_IcjPzn7I6IP8sFGN6YPyRXUAoDxFU3U4kjtZ-Mddk-6QOV-AyTI0wYk9vzkQJtwmPATvLPuGZRT2_0L_lv5D-HawWE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2189113520</pqid></control><display><type>article</type><title>Dislocation structure and microstrain evolution during spinodal decomposition of reactive magnetron sputtered heteroepixatial c-(Ti0.37,Al0.63)N/c-TiN films grown on MgO(001) and (111) substrates</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Calamba, K. M. ; Pierson, J. F. ; Bruyère, S. ; Febvrier, A. L. ; Eklund, P. ; Barrirero, J. ; Mücklich, F. ; Boyd, R. ; Johansson Jõesaar, M. P. ; Odén, M.</creator><creatorcontrib>Calamba, K. M. ; Pierson, J. F. ; Bruyère, S. ; Febvrier, A. L. ; Eklund, P. ; Barrirero, J. ; Mücklich, F. ; Boyd, R. ; Johansson Jõesaar, M. P. ; Odén, M.</creatorcontrib><description>Heteroepitaxial c-(Ti0.37,Al0.63)N thin films were grown on MgO(001) and MgO(111) substrates using reactive magnetron sputtering. High resolution high-angle annular dark-field scanning transmission electron micrographs show coherency between the film and the substrate. In the as-deposited state, x-ray diffraction reciprocal space maps show a strained epitaxial film. Corresponding geometric phase analysis (GPA) deformation maps show a high stress in the film. At elevated temperature (900 °C), the films decompose to form iso-structural coherent c-AlN- and c-TiN-rich domains, elongated along the elastically soft directions. GPA analysis reveals that the c-TiN domains accommodate more dislocations than the c-AlN domains. This is because of the stronger directionality of the covalent bonds in c-AlN compared with c-TiN, making it more favorable for the dislocations to accumulate in c-TiN. The defect structure and strain generation in c-(Ti,Al)N during spinodal decomposition is affected by the chemical bonding state and elastic properties of the segregated domains.</description><identifier>ISSN: 0021-8979</identifier><identifier>ISSN: 1089-7550</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5051609</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum nitride ; Applied physics ; Bonding strength ; Chemical bonds ; Covalent bonds ; Decomposition reactions ; Deformation analysis ; Dislocations ; Domains ; Elastic properties ; Electron micrographs ; Elongated structure ; High temperature ; Magnesium oxide ; Magnetron sputtering ; Microstrain ; Organic chemistry ; Spinodal decomposition ; Substrates ; Thin films ; Titanium nitride ; X-ray diffraction</subject><ispartof>Journal of applied physics, 2019-03, Vol.125 (10)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-20e89a8bbd9e6fb31fde31784e14eee5640edc541c7755b0190e99dc3a1b1be3</citedby><cites>FETCH-LOGICAL-c468t-20e89a8bbd9e6fb31fde31784e14eee5640edc541c7755b0190e99dc3a1b1be3</cites><orcidid>0000-0002-2286-5588 ; 0000-0002-3059-7392 ; 0000-0003-1785-0864 ; 0000-0001-7160-4520 ; 0000-0001-9661-1495 ; 0000-0001-8790-3162</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.5051609$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4510,27922,27923,76154</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-155889$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-537666$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Calamba, K. M.</creatorcontrib><creatorcontrib>Pierson, J. F.</creatorcontrib><creatorcontrib>Bruyère, S.</creatorcontrib><creatorcontrib>Febvrier, A. L.</creatorcontrib><creatorcontrib>Eklund, P.</creatorcontrib><creatorcontrib>Barrirero, J.</creatorcontrib><creatorcontrib>Mücklich, F.</creatorcontrib><creatorcontrib>Boyd, R.</creatorcontrib><creatorcontrib>Johansson Jõesaar, M. P.</creatorcontrib><creatorcontrib>Odén, M.</creatorcontrib><title>Dislocation structure and microstrain evolution during spinodal decomposition of reactive magnetron sputtered heteroepixatial c-(Ti0.37,Al0.63)N/c-TiN films grown on MgO(001) and (111) substrates</title><title>Journal of applied physics</title><description>Heteroepitaxial c-(Ti0.37,Al0.63)N thin films were grown on MgO(001) and MgO(111) substrates using reactive magnetron sputtering. High resolution high-angle annular dark-field scanning transmission electron micrographs show coherency between the film and the substrate. In the as-deposited state, x-ray diffraction reciprocal space maps show a strained epitaxial film. Corresponding geometric phase analysis (GPA) deformation maps show a high stress in the film. At elevated temperature (900 °C), the films decompose to form iso-structural coherent c-AlN- and c-TiN-rich domains, elongated along the elastically soft directions. GPA analysis reveals that the c-TiN domains accommodate more dislocations than the c-AlN domains. This is because of the stronger directionality of the covalent bonds in c-AlN compared with c-TiN, making it more favorable for the dislocations to accumulate in c-TiN. The defect structure and strain generation in c-(Ti,Al)N during spinodal decomposition is affected by the chemical bonding state and elastic properties of the segregated domains.</description><subject>Aluminum nitride</subject><subject>Applied physics</subject><subject>Bonding strength</subject><subject>Chemical bonds</subject><subject>Covalent bonds</subject><subject>Decomposition reactions</subject><subject>Deformation analysis</subject><subject>Dislocations</subject><subject>Domains</subject><subject>Elastic properties</subject><subject>Electron micrographs</subject><subject>Elongated structure</subject><subject>High temperature</subject><subject>Magnesium oxide</subject><subject>Magnetron sputtering</subject><subject>Microstrain</subject><subject>Organic chemistry</subject><subject>Spinodal decomposition</subject><subject>Substrates</subject><subject>Thin films</subject><subject>Titanium nitride</subject><subject>X-ray diffraction</subject><issn>0021-8979</issn><issn>1089-7550</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkk1v1DAQhiMEEkvhwD-wxGW3araedZzEx1XLR6XSXlZcLceZBFfZOPhjC7-PP4b3Q-0BCU4zsh-_83pmsuw90CXQkl3CklMOJRUvshnQWuQV5_RlNqN0BXktKvE6e-P9A6UANROz7Pe18YPVKhg7Eh9c1CE6JGpsydZoZ9ORMiPBnR3igWmjM2NP_GRG26qBtKjtdrLeHG5tRxwqHcwOyVb1Iwa3151iCOiwJd8xRYuT-Zkqptc6n28MXbLqYj3QZckWd5c635g70plh60nv7GMSHcnX_n6ePC8OxuYAKfOx2ZsL6N9mrzo1eHx3imfZ5tPHzdWX_Pb-883V-jbXRVmHfEWxFqpumlZg2TUMuhYZVHWBUCAiLwuKreYF6Co1raEgKArRaqaggQbZWXZxlPWPOMVGTs5slfslrTLy2nxbS-t6GaPkrCrLMuH5__HBRAmc17VI_IcjPzn7I6IP8sFGN6YPyRXUAoDxFU3U4kjtZ-Mddk-6QOV-AyTI0wYk9vzkQJtwmPATvLPuGZRT2_0L_lv5D-HawWE</recordid><startdate>20190314</startdate><enddate>20190314</enddate><creator>Calamba, K. M.</creator><creator>Pierson, J. F.</creator><creator>Bruyère, S.</creator><creator>Febvrier, A. L.</creator><creator>Eklund, P.</creator><creator>Barrirero, J.</creator><creator>Mücklich, F.</creator><creator>Boyd, R.</creator><creator>Johansson Jõesaar, M. P.</creator><creator>Odén, M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG8</scope><scope>DF2</scope><orcidid>https://orcid.org/0000-0002-2286-5588</orcidid><orcidid>https://orcid.org/0000-0002-3059-7392</orcidid><orcidid>https://orcid.org/0000-0003-1785-0864</orcidid><orcidid>https://orcid.org/0000-0001-7160-4520</orcidid><orcidid>https://orcid.org/0000-0001-9661-1495</orcidid><orcidid>https://orcid.org/0000-0001-8790-3162</orcidid></search><sort><creationdate>20190314</creationdate><title>Dislocation structure and microstrain evolution during spinodal decomposition of reactive magnetron sputtered heteroepixatial c-(Ti0.37,Al0.63)N/c-TiN films grown on MgO(001) and (111) substrates</title><author>Calamba, K. M. ; Pierson, J. F. ; Bruyère, S. ; Febvrier, A. L. ; Eklund, P. ; Barrirero, J. ; Mücklich, F. ; Boyd, R. ; Johansson Jõesaar, M. P. ; Odén, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-20e89a8bbd9e6fb31fde31784e14eee5640edc541c7755b0190e99dc3a1b1be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum nitride</topic><topic>Applied physics</topic><topic>Bonding strength</topic><topic>Chemical bonds</topic><topic>Covalent bonds</topic><topic>Decomposition reactions</topic><topic>Deformation analysis</topic><topic>Dislocations</topic><topic>Domains</topic><topic>Elastic properties</topic><topic>Electron micrographs</topic><topic>Elongated structure</topic><topic>High temperature</topic><topic>Magnesium oxide</topic><topic>Magnetron sputtering</topic><topic>Microstrain</topic><topic>Organic chemistry</topic><topic>Spinodal decomposition</topic><topic>Substrates</topic><topic>Thin films</topic><topic>Titanium nitride</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calamba, K. M.</creatorcontrib><creatorcontrib>Pierson, J. F.</creatorcontrib><creatorcontrib>Bruyère, S.</creatorcontrib><creatorcontrib>Febvrier, A. L.</creatorcontrib><creatorcontrib>Eklund, P.</creatorcontrib><creatorcontrib>Barrirero, J.</creatorcontrib><creatorcontrib>Mücklich, F.</creatorcontrib><creatorcontrib>Boyd, R.</creatorcontrib><creatorcontrib>Johansson Jõesaar, M. P.</creatorcontrib><creatorcontrib>Odén, M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Linköpings universitet</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calamba, K. M.</au><au>Pierson, J. F.</au><au>Bruyère, S.</au><au>Febvrier, A. L.</au><au>Eklund, P.</au><au>Barrirero, J.</au><au>Mücklich, F.</au><au>Boyd, R.</au><au>Johansson Jõesaar, M. P.</au><au>Odén, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dislocation structure and microstrain evolution during spinodal decomposition of reactive magnetron sputtered heteroepixatial c-(Ti0.37,Al0.63)N/c-TiN films grown on MgO(001) and (111) substrates</atitle><jtitle>Journal of applied physics</jtitle><date>2019-03-14</date><risdate>2019</risdate><volume>125</volume><issue>10</issue><issn>0021-8979</issn><issn>1089-7550</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Heteroepitaxial c-(Ti0.37,Al0.63)N thin films were grown on MgO(001) and MgO(111) substrates using reactive magnetron sputtering. High resolution high-angle annular dark-field scanning transmission electron micrographs show coherency between the film and the substrate. In the as-deposited state, x-ray diffraction reciprocal space maps show a strained epitaxial film. Corresponding geometric phase analysis (GPA) deformation maps show a high stress in the film. At elevated temperature (900 °C), the films decompose to form iso-structural coherent c-AlN- and c-TiN-rich domains, elongated along the elastically soft directions. GPA analysis reveals that the c-TiN domains accommodate more dislocations than the c-AlN domains. This is because of the stronger directionality of the covalent bonds in c-AlN compared with c-TiN, making it more favorable for the dislocations to accumulate in c-TiN. The defect structure and strain generation in c-(Ti,Al)N during spinodal decomposition is affected by the chemical bonding state and elastic properties of the segregated domains.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5051609</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2286-5588</orcidid><orcidid>https://orcid.org/0000-0002-3059-7392</orcidid><orcidid>https://orcid.org/0000-0003-1785-0864</orcidid><orcidid>https://orcid.org/0000-0001-7160-4520</orcidid><orcidid>https://orcid.org/0000-0001-9661-1495</orcidid><orcidid>https://orcid.org/0000-0001-8790-3162</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2019-03, Vol.125 (10)
issn 0021-8979
1089-7550
1089-7550
language eng
recordid cdi_proquest_journals_2189113520
source AIP Journals Complete; Alma/SFX Local Collection
subjects Aluminum nitride
Applied physics
Bonding strength
Chemical bonds
Covalent bonds
Decomposition reactions
Deformation analysis
Dislocations
Domains
Elastic properties
Electron micrographs
Elongated structure
High temperature
Magnesium oxide
Magnetron sputtering
Microstrain
Organic chemistry
Spinodal decomposition
Substrates
Thin films
Titanium nitride
X-ray diffraction
title Dislocation structure and microstrain evolution during spinodal decomposition of reactive magnetron sputtered heteroepixatial c-(Ti0.37,Al0.63)N/c-TiN films grown on MgO(001) and (111) substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A18%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dislocation%20structure%20and%20microstrain%20evolution%20during%20spinodal%20decomposition%20of%20reactive%20magnetron%20sputtered%20heteroepixatial%20c-(Ti0.37,Al0.63)N/c-TiN%20films%20grown%20on%20MgO(001)%20and%20(111)%20substrates&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Calamba,%20K.%20M.&rft.date=2019-03-14&rft.volume=125&rft.issue=10&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.5051609&rft_dat=%3Cproquest_swepu%3E2189113520%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2189113520&rft_id=info:pmid/&rfr_iscdi=true