DFT study of small gas molecules adsorbed on undoped and N-, Si-, B-, and Al-doped graphene quantum dots

A theoretical study about the interaction between small gas molecules (H 2 O, CO, CO 2 , NH 3 , and CH 4 ) with graphene quantum dots (GQDs) was performed. To develop gas sensors with ultralow detection levels, the nature of the bonds between the gas molecules and the GQDs should be understood and c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical chemistry accounts 2019-03, Vol.138 (3), p.1-15, Article 37
Hauptverfasser: Montejo-Alvaro, F., Oliva, J., Herrera-Trejo, M., Hdz-García, H. M., Mtz-Enriquez, A. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 3
container_start_page 1
container_title Theoretical chemistry accounts
container_volume 138
creator Montejo-Alvaro, F.
Oliva, J.
Herrera-Trejo, M.
Hdz-García, H. M.
Mtz-Enriquez, A. I.
description A theoretical study about the interaction between small gas molecules (H 2 O, CO, CO 2 , NH 3 , and CH 4 ) with graphene quantum dots (GQDs) was performed. To develop gas sensors with ultralow detection levels, the nature of the bonds between the gas molecules and the GQDs should be understood and controlled. It was found that the binding energy ( E b ) of the gas molecules with the GQDs can be controlled if the GQDs are doped. In the first part of the investigation, a choice of appropriated exchange/correlation functionals and basis sets was achieved. After this, the pure generalized gradient approximation (GGA) functionals, including the non-local (NL) density-dependent dispersion correction and the atom-pairwise dispersion correction (D3), were employed and found that they described accurately the E b for the adsorption of water on GQDs. The use of NL and D3 corrected GGA functionals revealed that the E b for the adsorption of H 2 O, CO, and NH 3 on Si- and Al-doped GQDs can be improved, which indicates that the detection limit for the detection of these gases can be enhanced. To understand the nature of the bonds involved in the adsorption, different approaches were used, such as the quantum theory of atom in molecules and the electron localization function.
doi_str_mv 10.1007/s00214-019-2428-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2189043531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2189043531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ba7fac81018605120538ff2e083f227d8a449475c28b4281d21c31aaba655dfd3</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMIHcLPEFYPXdhr3WAoFpAoOFImb5cR2H0ri1k4O7dfjKpU4cdiHdmdmtYPQLdAHoDR_jJQyEITCmDDBJDmcoQEIzghjXJyfeinh5xJdxbihCc6yfIBWz7MFjm1n9tg7HGtdVXipI659ZcuushFrE30orMG-wV1j_Da1ujH4g9zjr3VKTymOg0lF-u0y6O3KNhbvOt20XY2Nb-M1unC6ivbmVIfoe_aymL6R-efr-3QyJyWHUUsKnTtdSqAgRzQDRjMunWOWSu4Yy43UQoxFnpVMFulPMAwSUetCj7LMOMOH6K7X3Qa_62xs1cZ3oUknFQM5poJnHBIKelQZfIzBOrUN61qHvQKqjoaq3lCVDFVHQ9UhcVjPiQnbLG34U_6f9AurlXax</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2189043531</pqid></control><display><type>article</type><title>DFT study of small gas molecules adsorbed on undoped and N-, Si-, B-, and Al-doped graphene quantum dots</title><source>SpringerLink Journals - AutoHoldings</source><creator>Montejo-Alvaro, F. ; Oliva, J. ; Herrera-Trejo, M. ; Hdz-García, H. M. ; Mtz-Enriquez, A. I.</creator><creatorcontrib>Montejo-Alvaro, F. ; Oliva, J. ; Herrera-Trejo, M. ; Hdz-García, H. M. ; Mtz-Enriquez, A. I.</creatorcontrib><description>A theoretical study about the interaction between small gas molecules (H 2 O, CO, CO 2 , NH 3 , and CH 4 ) with graphene quantum dots (GQDs) was performed. To develop gas sensors with ultralow detection levels, the nature of the bonds between the gas molecules and the GQDs should be understood and controlled. It was found that the binding energy ( E b ) of the gas molecules with the GQDs can be controlled if the GQDs are doped. In the first part of the investigation, a choice of appropriated exchange/correlation functionals and basis sets was achieved. After this, the pure generalized gradient approximation (GGA) functionals, including the non-local (NL) density-dependent dispersion correction and the atom-pairwise dispersion correction (D3), were employed and found that they described accurately the E b for the adsorption of water on GQDs. The use of NL and D3 corrected GGA functionals revealed that the E b for the adsorption of H 2 O, CO, and NH 3 on Si- and Al-doped GQDs can be improved, which indicates that the detection limit for the detection of these gases can be enhanced. To understand the nature of the bonds involved in the adsorption, different approaches were used, such as the quantum theory of atom in molecules and the electron localization function.</description><identifier>ISSN: 1432-881X</identifier><identifier>EISSN: 1432-2234</identifier><identifier>DOI: 10.1007/s00214-019-2428-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adsorption ; Aluminum ; Ammonia ; Atomic/Molecular Structure and Spectra ; Chemistry ; Chemistry and Materials Science ; Density functional theory ; Dispersion ; Gas sensors ; Gases ; Graphene ; Inorganic Chemistry ; Organic Chemistry ; Physical Chemistry ; Quantum dots ; Quantum theory ; Regular Article ; Silicon ; Theoretical and Computational Chemistry</subject><ispartof>Theoretical chemistry accounts, 2019-03, Vol.138 (3), p.1-15, Article 37</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ba7fac81018605120538ff2e083f227d8a449475c28b4281d21c31aaba655dfd3</citedby><cites>FETCH-LOGICAL-c316t-ba7fac81018605120538ff2e083f227d8a449475c28b4281d21c31aaba655dfd3</cites><orcidid>0000-0003-1425-686X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00214-019-2428-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00214-019-2428-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Montejo-Alvaro, F.</creatorcontrib><creatorcontrib>Oliva, J.</creatorcontrib><creatorcontrib>Herrera-Trejo, M.</creatorcontrib><creatorcontrib>Hdz-García, H. M.</creatorcontrib><creatorcontrib>Mtz-Enriquez, A. I.</creatorcontrib><title>DFT study of small gas molecules adsorbed on undoped and N-, Si-, B-, and Al-doped graphene quantum dots</title><title>Theoretical chemistry accounts</title><addtitle>Theor Chem Acc</addtitle><description>A theoretical study about the interaction between small gas molecules (H 2 O, CO, CO 2 , NH 3 , and CH 4 ) with graphene quantum dots (GQDs) was performed. To develop gas sensors with ultralow detection levels, the nature of the bonds between the gas molecules and the GQDs should be understood and controlled. It was found that the binding energy ( E b ) of the gas molecules with the GQDs can be controlled if the GQDs are doped. In the first part of the investigation, a choice of appropriated exchange/correlation functionals and basis sets was achieved. After this, the pure generalized gradient approximation (GGA) functionals, including the non-local (NL) density-dependent dispersion correction and the atom-pairwise dispersion correction (D3), were employed and found that they described accurately the E b for the adsorption of water on GQDs. The use of NL and D3 corrected GGA functionals revealed that the E b for the adsorption of H 2 O, CO, and NH 3 on Si- and Al-doped GQDs can be improved, which indicates that the detection limit for the detection of these gases can be enhanced. To understand the nature of the bonds involved in the adsorption, different approaches were used, such as the quantum theory of atom in molecules and the electron localization function.</description><subject>Adsorption</subject><subject>Aluminum</subject><subject>Ammonia</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Density functional theory</subject><subject>Dispersion</subject><subject>Gas sensors</subject><subject>Gases</subject><subject>Graphene</subject><subject>Inorganic Chemistry</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Quantum dots</subject><subject>Quantum theory</subject><subject>Regular Article</subject><subject>Silicon</subject><subject>Theoretical and Computational Chemistry</subject><issn>1432-881X</issn><issn>1432-2234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIlMIHcLPEFYPXdhr3WAoFpAoOFImb5cR2H0ri1k4O7dfjKpU4cdiHdmdmtYPQLdAHoDR_jJQyEITCmDDBJDmcoQEIzghjXJyfeinh5xJdxbihCc6yfIBWz7MFjm1n9tg7HGtdVXipI659ZcuushFrE30orMG-wV1j_Da1ujH4g9zjr3VKTymOg0lF-u0y6O3KNhbvOt20XY2Nb-M1unC6ivbmVIfoe_aymL6R-efr-3QyJyWHUUsKnTtdSqAgRzQDRjMunWOWSu4Yy43UQoxFnpVMFulPMAwSUetCj7LMOMOH6K7X3Qa_62xs1cZ3oUknFQM5poJnHBIKelQZfIzBOrUN61qHvQKqjoaq3lCVDFVHQ9UhcVjPiQnbLG34U_6f9AurlXax</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Montejo-Alvaro, F.</creator><creator>Oliva, J.</creator><creator>Herrera-Trejo, M.</creator><creator>Hdz-García, H. M.</creator><creator>Mtz-Enriquez, A. I.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1425-686X</orcidid></search><sort><creationdate>20190301</creationdate><title>DFT study of small gas molecules adsorbed on undoped and N-, Si-, B-, and Al-doped graphene quantum dots</title><author>Montejo-Alvaro, F. ; Oliva, J. ; Herrera-Trejo, M. ; Hdz-García, H. M. ; Mtz-Enriquez, A. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ba7fac81018605120538ff2e083f227d8a449475c28b4281d21c31aaba655dfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorption</topic><topic>Aluminum</topic><topic>Ammonia</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Density functional theory</topic><topic>Dispersion</topic><topic>Gas sensors</topic><topic>Gases</topic><topic>Graphene</topic><topic>Inorganic Chemistry</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Quantum dots</topic><topic>Quantum theory</topic><topic>Regular Article</topic><topic>Silicon</topic><topic>Theoretical and Computational Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montejo-Alvaro, F.</creatorcontrib><creatorcontrib>Oliva, J.</creatorcontrib><creatorcontrib>Herrera-Trejo, M.</creatorcontrib><creatorcontrib>Hdz-García, H. M.</creatorcontrib><creatorcontrib>Mtz-Enriquez, A. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Theoretical chemistry accounts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montejo-Alvaro, F.</au><au>Oliva, J.</au><au>Herrera-Trejo, M.</au><au>Hdz-García, H. M.</au><au>Mtz-Enriquez, A. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DFT study of small gas molecules adsorbed on undoped and N-, Si-, B-, and Al-doped graphene quantum dots</atitle><jtitle>Theoretical chemistry accounts</jtitle><stitle>Theor Chem Acc</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>138</volume><issue>3</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><artnum>37</artnum><issn>1432-881X</issn><eissn>1432-2234</eissn><abstract>A theoretical study about the interaction between small gas molecules (H 2 O, CO, CO 2 , NH 3 , and CH 4 ) with graphene quantum dots (GQDs) was performed. To develop gas sensors with ultralow detection levels, the nature of the bonds between the gas molecules and the GQDs should be understood and controlled. It was found that the binding energy ( E b ) of the gas molecules with the GQDs can be controlled if the GQDs are doped. In the first part of the investigation, a choice of appropriated exchange/correlation functionals and basis sets was achieved. After this, the pure generalized gradient approximation (GGA) functionals, including the non-local (NL) density-dependent dispersion correction and the atom-pairwise dispersion correction (D3), were employed and found that they described accurately the E b for the adsorption of water on GQDs. The use of NL and D3 corrected GGA functionals revealed that the E b for the adsorption of H 2 O, CO, and NH 3 on Si- and Al-doped GQDs can be improved, which indicates that the detection limit for the detection of these gases can be enhanced. To understand the nature of the bonds involved in the adsorption, different approaches were used, such as the quantum theory of atom in molecules and the electron localization function.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00214-019-2428-z</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1425-686X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1432-881X
ispartof Theoretical chemistry accounts, 2019-03, Vol.138 (3), p.1-15, Article 37
issn 1432-881X
1432-2234
language eng
recordid cdi_proquest_journals_2189043531
source SpringerLink Journals - AutoHoldings
subjects Adsorption
Aluminum
Ammonia
Atomic/Molecular Structure and Spectra
Chemistry
Chemistry and Materials Science
Density functional theory
Dispersion
Gas sensors
Gases
Graphene
Inorganic Chemistry
Organic Chemistry
Physical Chemistry
Quantum dots
Quantum theory
Regular Article
Silicon
Theoretical and Computational Chemistry
title DFT study of small gas molecules adsorbed on undoped and N-, Si-, B-, and Al-doped graphene quantum dots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A54%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DFT%20study%20of%20small%20gas%20molecules%20adsorbed%20on%20undoped%20and%20N-,%20Si-,%20B-,%20and%20Al-doped%20graphene%20quantum%20dots&rft.jtitle=Theoretical%20chemistry%20accounts&rft.au=Montejo-Alvaro,%20F.&rft.date=2019-03-01&rft.volume=138&rft.issue=3&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.artnum=37&rft.issn=1432-881X&rft.eissn=1432-2234&rft_id=info:doi/10.1007/s00214-019-2428-z&rft_dat=%3Cproquest_cross%3E2189043531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2189043531&rft_id=info:pmid/&rfr_iscdi=true