An efficient semi‐implicit temporal scheme for boundary‐layer vertical diffusion

Time integration of the boundary‐layer vertical diffusion equation has been investigated. The nonlinearity associated with the diffusion coefficient makes the implicit approach impractical, while the use of an explicit scheme limits the stable time‐step sizes and consequently would be inefficient. B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly journal of the Royal Meteorological Society 2019-01, Vol.145 (719), p.609-619
Hauptverfasser: Rokhzadi, Arman, Mohammadian, Abdolmajid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 619
container_issue 719
container_start_page 609
container_title Quarterly journal of the Royal Meteorological Society
container_volume 145
creator Rokhzadi, Arman
Mohammadian, Abdolmajid
description Time integration of the boundary‐layer vertical diffusion equation has been investigated. The nonlinearity associated with the diffusion coefficient makes the implicit approach impractical, while the use of an explicit scheme limits the stable time‐step sizes and consequently would be inefficient. By using a diagonally implicit Runge–Kutta scheme, a new approach has been proposed in which the diffusion coefficients at each internal stage are calculated by a weight‐averaged combination of solutions. Using the weight coefficient α offers more robust calculations due to involving implicit solutions and, as shown, it could improve the accuracy due to more engaging the explicit solutions. It has been found that the proposed semi‐implicit method is more accurate and computationally less expensive than the implicit scheme. Moreover, in terms of stability and accuracy improvement, the advantage of the proposed DIRK scheme, compared to the scheme proposed by Diamantakis et al. (), has been revealed, particularly for a highly nonlinear diffusion term. The nonlinear vertical diffusion turbulent boundary‐layer flows can be solved more efficiently by the weight‐averaged semi‐implicit Runge–Kutta scheme. The accuracy is improved and the calculation cost is competitive to the current semi‐implicit schemes.
doi_str_mv 10.1002/qj.3455
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2189014561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2189014561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2515-51be198ac49b41558ba47cf404b1f219fc2aa2b3c5af2ad4c9bd6b24acd1f1ad3</originalsourceid><addsrcrecordid>eNp10M9KxDAQBvAgCq6r-AoFDx6kayZNtu1xWfzLgggreAtJmmBK23STVtmbj-Az-iRmXa-eBoYf3zAfQueAZ4Axud7Us4wydoAmQPM8LXL8eogmGGcsLTEuj9FJCDXGmOUkn6D1oku0MVZZ3Q1J0K39_vyybd_EzZAMuu2dF00S1JtudWKcT6Qbu0r4bXSN2GqfvGs_WBVRZY0Zg3XdKToyogn67G9O0cvtzXp5n66e7h6Wi1WqCAOWMpAaykIoWkoKjBVS0FwZiqkEQ6A0ighBZKaYMERUVJWymktCharAgKiyKbrY5_bebUYdBl670XfxJCdQlBgom0NUl3ulvAvBa8N7b9v4AQfMd5XxTc13lUV5tZcfttHb_xh_fvzVP2JWb2o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2189014561</pqid></control><display><type>article</type><title>An efficient semi‐implicit temporal scheme for boundary‐layer vertical diffusion</title><source>Wiley</source><creator>Rokhzadi, Arman ; Mohammadian, Abdolmajid</creator><creatorcontrib>Rokhzadi, Arman ; Mohammadian, Abdolmajid</creatorcontrib><description>Time integration of the boundary‐layer vertical diffusion equation has been investigated. The nonlinearity associated with the diffusion coefficient makes the implicit approach impractical, while the use of an explicit scheme limits the stable time‐step sizes and consequently would be inefficient. By using a diagonally implicit Runge–Kutta scheme, a new approach has been proposed in which the diffusion coefficients at each internal stage are calculated by a weight‐averaged combination of solutions. Using the weight coefficient α offers more robust calculations due to involving implicit solutions and, as shown, it could improve the accuracy due to more engaging the explicit solutions. It has been found that the proposed semi‐implicit method is more accurate and computationally less expensive than the implicit scheme. Moreover, in terms of stability and accuracy improvement, the advantage of the proposed DIRK scheme, compared to the scheme proposed by Diamantakis et al. (), has been revealed, particularly for a highly nonlinear diffusion term. The nonlinear vertical diffusion turbulent boundary‐layer flows can be solved more efficiently by the weight‐averaged semi‐implicit Runge–Kutta scheme. The accuracy is improved and the calculation cost is competitive to the current semi‐implicit schemes.</description><identifier>ISSN: 0035-9009</identifier><identifier>EISSN: 1477-870X</identifier><identifier>DOI: 10.1002/qj.3455</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Accuracy ; boundary layer ; Coefficients ; Diffusion ; Diffusion coefficient ; Diffusion coefficients ; DIRK scheme ; Nonlinear systems ; Nonlinearity ; semi‐implicit ; Solutions ; Stability ; Vertical diffusion ; Weight</subject><ispartof>Quarterly journal of the Royal Meteorological Society, 2019-01, Vol.145 (719), p.609-619</ispartof><rights>2018 Royal Meteorological Society</rights><rights>2019 Royal Meteorological Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2515-51be198ac49b41558ba47cf404b1f219fc2aa2b3c5af2ad4c9bd6b24acd1f1ad3</cites><orcidid>0000-0003-2009-1299</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqj.3455$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqj.3455$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Rokhzadi, Arman</creatorcontrib><creatorcontrib>Mohammadian, Abdolmajid</creatorcontrib><title>An efficient semi‐implicit temporal scheme for boundary‐layer vertical diffusion</title><title>Quarterly journal of the Royal Meteorological Society</title><description>Time integration of the boundary‐layer vertical diffusion equation has been investigated. The nonlinearity associated with the diffusion coefficient makes the implicit approach impractical, while the use of an explicit scheme limits the stable time‐step sizes and consequently would be inefficient. By using a diagonally implicit Runge–Kutta scheme, a new approach has been proposed in which the diffusion coefficients at each internal stage are calculated by a weight‐averaged combination of solutions. Using the weight coefficient α offers more robust calculations due to involving implicit solutions and, as shown, it could improve the accuracy due to more engaging the explicit solutions. It has been found that the proposed semi‐implicit method is more accurate and computationally less expensive than the implicit scheme. Moreover, in terms of stability and accuracy improvement, the advantage of the proposed DIRK scheme, compared to the scheme proposed by Diamantakis et al. (), has been revealed, particularly for a highly nonlinear diffusion term. The nonlinear vertical diffusion turbulent boundary‐layer flows can be solved more efficiently by the weight‐averaged semi‐implicit Runge–Kutta scheme. The accuracy is improved and the calculation cost is competitive to the current semi‐implicit schemes.</description><subject>Accuracy</subject><subject>boundary layer</subject><subject>Coefficients</subject><subject>Diffusion</subject><subject>Diffusion coefficient</subject><subject>Diffusion coefficients</subject><subject>DIRK scheme</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>semi‐implicit</subject><subject>Solutions</subject><subject>Stability</subject><subject>Vertical diffusion</subject><subject>Weight</subject><issn>0035-9009</issn><issn>1477-870X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10M9KxDAQBvAgCq6r-AoFDx6kayZNtu1xWfzLgggreAtJmmBK23STVtmbj-Az-iRmXa-eBoYf3zAfQueAZ4Axud7Us4wydoAmQPM8LXL8eogmGGcsLTEuj9FJCDXGmOUkn6D1oku0MVZZ3Q1J0K39_vyybd_EzZAMuu2dF00S1JtudWKcT6Qbu0r4bXSN2GqfvGs_WBVRZY0Zg3XdKToyogn67G9O0cvtzXp5n66e7h6Wi1WqCAOWMpAaykIoWkoKjBVS0FwZiqkEQ6A0ighBZKaYMERUVJWymktCharAgKiyKbrY5_bebUYdBl670XfxJCdQlBgom0NUl3ulvAvBa8N7b9v4AQfMd5XxTc13lUV5tZcfttHb_xh_fvzVP2JWb2o</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Rokhzadi, Arman</creator><creator>Mohammadian, Abdolmajid</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0003-2009-1299</orcidid></search><sort><creationdate>201901</creationdate><title>An efficient semi‐implicit temporal scheme for boundary‐layer vertical diffusion</title><author>Rokhzadi, Arman ; Mohammadian, Abdolmajid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2515-51be198ac49b41558ba47cf404b1f219fc2aa2b3c5af2ad4c9bd6b24acd1f1ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>boundary layer</topic><topic>Coefficients</topic><topic>Diffusion</topic><topic>Diffusion coefficient</topic><topic>Diffusion coefficients</topic><topic>DIRK scheme</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>semi‐implicit</topic><topic>Solutions</topic><topic>Stability</topic><topic>Vertical diffusion</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rokhzadi, Arman</creatorcontrib><creatorcontrib>Mohammadian, Abdolmajid</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rokhzadi, Arman</au><au>Mohammadian, Abdolmajid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient semi‐implicit temporal scheme for boundary‐layer vertical diffusion</atitle><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle><date>2019-01</date><risdate>2019</risdate><volume>145</volume><issue>719</issue><spage>609</spage><epage>619</epage><pages>609-619</pages><issn>0035-9009</issn><eissn>1477-870X</eissn><abstract>Time integration of the boundary‐layer vertical diffusion equation has been investigated. The nonlinearity associated with the diffusion coefficient makes the implicit approach impractical, while the use of an explicit scheme limits the stable time‐step sizes and consequently would be inefficient. By using a diagonally implicit Runge–Kutta scheme, a new approach has been proposed in which the diffusion coefficients at each internal stage are calculated by a weight‐averaged combination of solutions. Using the weight coefficient α offers more robust calculations due to involving implicit solutions and, as shown, it could improve the accuracy due to more engaging the explicit solutions. It has been found that the proposed semi‐implicit method is more accurate and computationally less expensive than the implicit scheme. Moreover, in terms of stability and accuracy improvement, the advantage of the proposed DIRK scheme, compared to the scheme proposed by Diamantakis et al. (), has been revealed, particularly for a highly nonlinear diffusion term. The nonlinear vertical diffusion turbulent boundary‐layer flows can be solved more efficiently by the weight‐averaged semi‐implicit Runge–Kutta scheme. The accuracy is improved and the calculation cost is competitive to the current semi‐implicit schemes.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/qj.3455</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2009-1299</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0035-9009
ispartof Quarterly journal of the Royal Meteorological Society, 2019-01, Vol.145 (719), p.609-619
issn 0035-9009
1477-870X
language eng
recordid cdi_proquest_journals_2189014561
source Wiley
subjects Accuracy
boundary layer
Coefficients
Diffusion
Diffusion coefficient
Diffusion coefficients
DIRK scheme
Nonlinear systems
Nonlinearity
semi‐implicit
Solutions
Stability
Vertical diffusion
Weight
title An efficient semi‐implicit temporal scheme for boundary‐layer vertical diffusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A30%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20semi%E2%80%90implicit%20temporal%20scheme%20for%20boundary%E2%80%90layer%20vertical%20diffusion&rft.jtitle=Quarterly%20journal%20of%20the%20Royal%20Meteorological%20Society&rft.au=Rokhzadi,%20Arman&rft.date=2019-01&rft.volume=145&rft.issue=719&rft.spage=609&rft.epage=619&rft.pages=609-619&rft.issn=0035-9009&rft.eissn=1477-870X&rft_id=info:doi/10.1002/qj.3455&rft_dat=%3Cproquest_cross%3E2189014561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2189014561&rft_id=info:pmid/&rfr_iscdi=true