APOBEC3 induces mutations during repair of CRISPR–Cas9-generated DNA breaks

The APOBEC-AID family of cytidine deaminase prefers single-stranded nucleic acids for cytidine-to-uridine deamination. Single-stranded nucleic acids are commonly involved in the DNA repair system for breaks generated by CRISPR–Cas9. Here, we show in human cells that APOBEC3 can trigger cytidine deam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2018-01, Vol.25 (1), p.45-52
Hauptverfasser: Lei, Liqun, Chen, Hongquan, Xue, Wei, Yang, Bei, Hu, Bian, Wei, Jia, Wang, Lijie, Cui, Yiqiang, Li, Wei, Wang, Jianying, Yan, Lei, Shang, Wanjing, Gao, Jimin, Sha, Jiahao, Zhuang, Min, Huang, Xingxu, Shen, Bin, Yang, Li, Chen, Jia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 52
container_issue 1
container_start_page 45
container_title Nature structural & molecular biology
container_volume 25
creator Lei, Liqun
Chen, Hongquan
Xue, Wei
Yang, Bei
Hu, Bian
Wei, Jia
Wang, Lijie
Cui, Yiqiang
Li, Wei
Wang, Jianying
Yan, Lei
Shang, Wanjing
Gao, Jimin
Sha, Jiahao
Zhuang, Min
Huang, Xingxu
Shen, Bin
Yang, Li
Chen, Jia
description The APOBEC-AID family of cytidine deaminase prefers single-stranded nucleic acids for cytidine-to-uridine deamination. Single-stranded nucleic acids are commonly involved in the DNA repair system for breaks generated by CRISPR–Cas9. Here, we show in human cells that APOBEC3 can trigger cytidine deamination of single-stranded oligodeoxynucleotides, which ultimately results in base substitution mutations in genomic DNA through homology-directed repair (HDR) of Cas9-generated double-strand breaks. In addition, the APOBEC3-catalyzed deamination in genomic single-stranded DNA formed during the repair of Cas9 nickase-generated single-strand breaks in human cells can be further processed to yield mutations mainly involving insertions or deletions (indels). Both APOBEC3-mediated deamination and DNA-repair proteins play important roles in the generation of these indels. Therefore, optimizing conditions for the repair of CRISPR–Cas9-generated DNA breaks, such as using double-stranded donors in HDR or temporarily suppressing endogenous APOBEC3s, can repress these unwanted mutations in genomic DNA. The APOBEC-AID family of cytidine deaminases target single-stranded nucleic acids for cytidine-to-uridine deamination and can thereby affect DNA repair processes that occur during CRISPR–Cas9-mediated genome editing.
doi_str_mv 10.1038/s41594-017-0004-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2188972698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A593382120</galeid><sourcerecordid>A593382120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-11f72b4c0513095e4277d7d2f5352e48a847e701f752851169ca4c5b18f7dacd3</originalsourceid><addsrcrecordid>eNp1kc1OGzEQx62qqEDgAXqpVuqJw4I_Y_uYbqFECgUFOFuOPRuZsrupvSvBjXfoG_ZJ6ih8KBKVD2ONfv8ZjX4IfSb4mGCmThInQvMSE1lijHk5_oD2iOCi1FqJj69_zXbRfkp3GFMhJPuEdqlmlFHJ99DF5Ory22nFitD6wUEqmqG3fejaVPghhnZZRFjZEIuuLqr59Ppq_vfpT2WTLpfQQrQ9-OL7z0mxiGB_pQO0U9v7BIfPdYRuz05vqvNydvljWk1mpeOS9SUhtaQL7rAgDGsBnErppae1YIICV1ZxCRJnSlAlCBlrZ7kTC6Jq6a3zbIS-buauYvd7gNSbu26IbV5pKFFKSzrW6o1a2nswoa27PlrXhOTMRGjGFCUUZ-r4HSo_D01wXQt1yP2twNFWIDM9PPRLO6RkptfzbZZsWBe7lCLUZhVDY-OjIdisHZqNQ5MdmrVDM86ZL8_HDYsG_GviRVoG6AZIq7UhiG_X_3_qPwn8ofw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2188972698</pqid></control><display><type>article</type><title>APOBEC3 induces mutations during repair of CRISPR–Cas9-generated DNA breaks</title><source>MEDLINE</source><source>SpringerLink_现刊</source><source>Nature</source><creator>Lei, Liqun ; Chen, Hongquan ; Xue, Wei ; Yang, Bei ; Hu, Bian ; Wei, Jia ; Wang, Lijie ; Cui, Yiqiang ; Li, Wei ; Wang, Jianying ; Yan, Lei ; Shang, Wanjing ; Gao, Jimin ; Sha, Jiahao ; Zhuang, Min ; Huang, Xingxu ; Shen, Bin ; Yang, Li ; Chen, Jia</creator><creatorcontrib>Lei, Liqun ; Chen, Hongquan ; Xue, Wei ; Yang, Bei ; Hu, Bian ; Wei, Jia ; Wang, Lijie ; Cui, Yiqiang ; Li, Wei ; Wang, Jianying ; Yan, Lei ; Shang, Wanjing ; Gao, Jimin ; Sha, Jiahao ; Zhuang, Min ; Huang, Xingxu ; Shen, Bin ; Yang, Li ; Chen, Jia</creatorcontrib><description>The APOBEC-AID family of cytidine deaminase prefers single-stranded nucleic acids for cytidine-to-uridine deamination. Single-stranded nucleic acids are commonly involved in the DNA repair system for breaks generated by CRISPR–Cas9. Here, we show in human cells that APOBEC3 can trigger cytidine deamination of single-stranded oligodeoxynucleotides, which ultimately results in base substitution mutations in genomic DNA through homology-directed repair (HDR) of Cas9-generated double-strand breaks. In addition, the APOBEC3-catalyzed deamination in genomic single-stranded DNA formed during the repair of Cas9 nickase-generated single-strand breaks in human cells can be further processed to yield mutations mainly involving insertions or deletions (indels). Both APOBEC3-mediated deamination and DNA-repair proteins play important roles in the generation of these indels. Therefore, optimizing conditions for the repair of CRISPR–Cas9-generated DNA breaks, such as using double-stranded donors in HDR or temporarily suppressing endogenous APOBEC3s, can repress these unwanted mutations in genomic DNA. The APOBEC-AID family of cytidine deaminases target single-stranded nucleic acids for cytidine-to-uridine deamination and can thereby affect DNA repair processes that occur during CRISPR–Cas9-mediated genome editing.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-017-0004-6</identifier><identifier>PMID: 29323274</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/337 ; 631/45 ; APOBEC Deaminases ; Biochemistry ; Biological Microscopy ; Biological research ; Biomedical and Life Sciences ; Cells (Biology) ; CRISPR ; CRISPR-Cas Systems ; Cytidine - chemistry ; Cytidine deaminase ; Cytidine Deaminase - genetics ; Cytosine Deaminase - chemistry ; Deamination ; Deoxyribonucleic acid ; DNA ; DNA Breaks, Double-Stranded ; DNA damage ; DNA Repair ; DNA, Single-Stranded ; Gene mutation ; Genetic aspects ; Genomes ; Genomics ; Health aspects ; HEK293 Cells ; HeLa Cells ; Homology ; Humans ; INDEL Mutation ; Life Sciences ; Membrane Biology ; Mutation ; Nucleic acids ; Oligodeoxynucleotides ; Oligonucleotides ; Oligonucleotides - genetics ; Protein Structure ; Proteins ; Pyrimidine nucleotides ; Recombinational DNA Repair ; Repair ; RNA, Small Interfering - metabolism ; Sequence Analysis, DNA ; Single-stranded DNA ; Uridine</subject><ispartof>Nature structural &amp; molecular biology, 2018-01, Vol.25 (1), p.45-52</ispartof><rights>The Author(s) 2017</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-11f72b4c0513095e4277d7d2f5352e48a847e701f752851169ca4c5b18f7dacd3</citedby><cites>FETCH-LOGICAL-c473t-11f72b4c0513095e4277d7d2f5352e48a847e701f752851169ca4c5b18f7dacd3</cites><orcidid>0000-0001-8833-7473 ; 0000-0002-8946-8448 ; 0000-0002-4242-2899 ; 0000-0001-5389-3859</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-017-0004-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-017-0004-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29323274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lei, Liqun</creatorcontrib><creatorcontrib>Chen, Hongquan</creatorcontrib><creatorcontrib>Xue, Wei</creatorcontrib><creatorcontrib>Yang, Bei</creatorcontrib><creatorcontrib>Hu, Bian</creatorcontrib><creatorcontrib>Wei, Jia</creatorcontrib><creatorcontrib>Wang, Lijie</creatorcontrib><creatorcontrib>Cui, Yiqiang</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Wang, Jianying</creatorcontrib><creatorcontrib>Yan, Lei</creatorcontrib><creatorcontrib>Shang, Wanjing</creatorcontrib><creatorcontrib>Gao, Jimin</creatorcontrib><creatorcontrib>Sha, Jiahao</creatorcontrib><creatorcontrib>Zhuang, Min</creatorcontrib><creatorcontrib>Huang, Xingxu</creatorcontrib><creatorcontrib>Shen, Bin</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Chen, Jia</creatorcontrib><title>APOBEC3 induces mutations during repair of CRISPR–Cas9-generated DNA breaks</title><title>Nature structural &amp; molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>The APOBEC-AID family of cytidine deaminase prefers single-stranded nucleic acids for cytidine-to-uridine deamination. Single-stranded nucleic acids are commonly involved in the DNA repair system for breaks generated by CRISPR–Cas9. Here, we show in human cells that APOBEC3 can trigger cytidine deamination of single-stranded oligodeoxynucleotides, which ultimately results in base substitution mutations in genomic DNA through homology-directed repair (HDR) of Cas9-generated double-strand breaks. In addition, the APOBEC3-catalyzed deamination in genomic single-stranded DNA formed during the repair of Cas9 nickase-generated single-strand breaks in human cells can be further processed to yield mutations mainly involving insertions or deletions (indels). Both APOBEC3-mediated deamination and DNA-repair proteins play important roles in the generation of these indels. Therefore, optimizing conditions for the repair of CRISPR–Cas9-generated DNA breaks, such as using double-stranded donors in HDR or temporarily suppressing endogenous APOBEC3s, can repress these unwanted mutations in genomic DNA. The APOBEC-AID family of cytidine deaminases target single-stranded nucleic acids for cytidine-to-uridine deamination and can thereby affect DNA repair processes that occur during CRISPR–Cas9-mediated genome editing.</description><subject>631/337</subject><subject>631/45</subject><subject>APOBEC Deaminases</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biological research</subject><subject>Biomedical and Life Sciences</subject><subject>Cells (Biology)</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Cytidine - chemistry</subject><subject>Cytidine deaminase</subject><subject>Cytidine Deaminase - genetics</subject><subject>Cytosine Deaminase - chemistry</subject><subject>Deamination</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA damage</subject><subject>DNA Repair</subject><subject>DNA, Single-Stranded</subject><subject>Gene mutation</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Health aspects</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>Homology</subject><subject>Humans</subject><subject>INDEL Mutation</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Mutation</subject><subject>Nucleic acids</subject><subject>Oligodeoxynucleotides</subject><subject>Oligonucleotides</subject><subject>Oligonucleotides - genetics</subject><subject>Protein Structure</subject><subject>Proteins</subject><subject>Pyrimidine nucleotides</subject><subject>Recombinational DNA Repair</subject><subject>Repair</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Sequence Analysis, DNA</subject><subject>Single-stranded DNA</subject><subject>Uridine</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kc1OGzEQx62qqEDgAXqpVuqJw4I_Y_uYbqFECgUFOFuOPRuZsrupvSvBjXfoG_ZJ6ih8KBKVD2ONfv8ZjX4IfSb4mGCmThInQvMSE1lijHk5_oD2iOCi1FqJj69_zXbRfkp3GFMhJPuEdqlmlFHJ99DF5Ory22nFitD6wUEqmqG3fejaVPghhnZZRFjZEIuuLqr59Ppq_vfpT2WTLpfQQrQ9-OL7z0mxiGB_pQO0U9v7BIfPdYRuz05vqvNydvljWk1mpeOS9SUhtaQL7rAgDGsBnErppae1YIICV1ZxCRJnSlAlCBlrZ7kTC6Jq6a3zbIS-buauYvd7gNSbu26IbV5pKFFKSzrW6o1a2nswoa27PlrXhOTMRGjGFCUUZ-r4HSo_D01wXQt1yP2twNFWIDM9PPRLO6RkptfzbZZsWBe7lCLUZhVDY-OjIdisHZqNQ5MdmrVDM86ZL8_HDYsG_GviRVoG6AZIq7UhiG_X_3_qPwn8ofw</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Lei, Liqun</creator><creator>Chen, Hongquan</creator><creator>Xue, Wei</creator><creator>Yang, Bei</creator><creator>Hu, Bian</creator><creator>Wei, Jia</creator><creator>Wang, Lijie</creator><creator>Cui, Yiqiang</creator><creator>Li, Wei</creator><creator>Wang, Jianying</creator><creator>Yan, Lei</creator><creator>Shang, Wanjing</creator><creator>Gao, Jimin</creator><creator>Sha, Jiahao</creator><creator>Zhuang, Min</creator><creator>Huang, Xingxu</creator><creator>Shen, Bin</creator><creator>Yang, Li</creator><creator>Chen, Jia</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0001-8833-7473</orcidid><orcidid>https://orcid.org/0000-0002-8946-8448</orcidid><orcidid>https://orcid.org/0000-0002-4242-2899</orcidid><orcidid>https://orcid.org/0000-0001-5389-3859</orcidid></search><sort><creationdate>20180101</creationdate><title>APOBEC3 induces mutations during repair of CRISPR–Cas9-generated DNA breaks</title><author>Lei, Liqun ; Chen, Hongquan ; Xue, Wei ; Yang, Bei ; Hu, Bian ; Wei, Jia ; Wang, Lijie ; Cui, Yiqiang ; Li, Wei ; Wang, Jianying ; Yan, Lei ; Shang, Wanjing ; Gao, Jimin ; Sha, Jiahao ; Zhuang, Min ; Huang, Xingxu ; Shen, Bin ; Yang, Li ; Chen, Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-11f72b4c0513095e4277d7d2f5352e48a847e701f752851169ca4c5b18f7dacd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/337</topic><topic>631/45</topic><topic>APOBEC Deaminases</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biological research</topic><topic>Biomedical and Life Sciences</topic><topic>Cells (Biology)</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Cytidine - chemistry</topic><topic>Cytidine deaminase</topic><topic>Cytidine Deaminase - genetics</topic><topic>Cytosine Deaminase - chemistry</topic><topic>Deamination</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA damage</topic><topic>DNA Repair</topic><topic>DNA, Single-Stranded</topic><topic>Gene mutation</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Health aspects</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>Homology</topic><topic>Humans</topic><topic>INDEL Mutation</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Mutation</topic><topic>Nucleic acids</topic><topic>Oligodeoxynucleotides</topic><topic>Oligonucleotides</topic><topic>Oligonucleotides - genetics</topic><topic>Protein Structure</topic><topic>Proteins</topic><topic>Pyrimidine nucleotides</topic><topic>Recombinational DNA Repair</topic><topic>Repair</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Sequence Analysis, DNA</topic><topic>Single-stranded DNA</topic><topic>Uridine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Liqun</creatorcontrib><creatorcontrib>Chen, Hongquan</creatorcontrib><creatorcontrib>Xue, Wei</creatorcontrib><creatorcontrib>Yang, Bei</creatorcontrib><creatorcontrib>Hu, Bian</creatorcontrib><creatorcontrib>Wei, Jia</creatorcontrib><creatorcontrib>Wang, Lijie</creatorcontrib><creatorcontrib>Cui, Yiqiang</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Wang, Jianying</creatorcontrib><creatorcontrib>Yan, Lei</creatorcontrib><creatorcontrib>Shang, Wanjing</creatorcontrib><creatorcontrib>Gao, Jimin</creatorcontrib><creatorcontrib>Sha, Jiahao</creatorcontrib><creatorcontrib>Zhuang, Min</creatorcontrib><creatorcontrib>Huang, Xingxu</creatorcontrib><creatorcontrib>Shen, Bin</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Chen, Jia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library (ProQuest Database)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Nature structural &amp; molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Liqun</au><au>Chen, Hongquan</au><au>Xue, Wei</au><au>Yang, Bei</au><au>Hu, Bian</au><au>Wei, Jia</au><au>Wang, Lijie</au><au>Cui, Yiqiang</au><au>Li, Wei</au><au>Wang, Jianying</au><au>Yan, Lei</au><au>Shang, Wanjing</au><au>Gao, Jimin</au><au>Sha, Jiahao</au><au>Zhuang, Min</au><au>Huang, Xingxu</au><au>Shen, Bin</au><au>Yang, Li</au><au>Chen, Jia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>APOBEC3 induces mutations during repair of CRISPR–Cas9-generated DNA breaks</atitle><jtitle>Nature structural &amp; molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>25</volume><issue>1</issue><spage>45</spage><epage>52</epage><pages>45-52</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>The APOBEC-AID family of cytidine deaminase prefers single-stranded nucleic acids for cytidine-to-uridine deamination. Single-stranded nucleic acids are commonly involved in the DNA repair system for breaks generated by CRISPR–Cas9. Here, we show in human cells that APOBEC3 can trigger cytidine deamination of single-stranded oligodeoxynucleotides, which ultimately results in base substitution mutations in genomic DNA through homology-directed repair (HDR) of Cas9-generated double-strand breaks. In addition, the APOBEC3-catalyzed deamination in genomic single-stranded DNA formed during the repair of Cas9 nickase-generated single-strand breaks in human cells can be further processed to yield mutations mainly involving insertions or deletions (indels). Both APOBEC3-mediated deamination and DNA-repair proteins play important roles in the generation of these indels. Therefore, optimizing conditions for the repair of CRISPR–Cas9-generated DNA breaks, such as using double-stranded donors in HDR or temporarily suppressing endogenous APOBEC3s, can repress these unwanted mutations in genomic DNA. The APOBEC-AID family of cytidine deaminases target single-stranded nucleic acids for cytidine-to-uridine deamination and can thereby affect DNA repair processes that occur during CRISPR–Cas9-mediated genome editing.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>29323274</pmid><doi>10.1038/s41594-017-0004-6</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8833-7473</orcidid><orcidid>https://orcid.org/0000-0002-8946-8448</orcidid><orcidid>https://orcid.org/0000-0002-4242-2899</orcidid><orcidid>https://orcid.org/0000-0001-5389-3859</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1545-9993
ispartof Nature structural & molecular biology, 2018-01, Vol.25 (1), p.45-52
issn 1545-9993
1545-9985
language eng
recordid cdi_proquest_journals_2188972698
source MEDLINE; SpringerLink_现刊; Nature
subjects 631/337
631/45
APOBEC Deaminases
Biochemistry
Biological Microscopy
Biological research
Biomedical and Life Sciences
Cells (Biology)
CRISPR
CRISPR-Cas Systems
Cytidine - chemistry
Cytidine deaminase
Cytidine Deaminase - genetics
Cytosine Deaminase - chemistry
Deamination
Deoxyribonucleic acid
DNA
DNA Breaks, Double-Stranded
DNA damage
DNA Repair
DNA, Single-Stranded
Gene mutation
Genetic aspects
Genomes
Genomics
Health aspects
HEK293 Cells
HeLa Cells
Homology
Humans
INDEL Mutation
Life Sciences
Membrane Biology
Mutation
Nucleic acids
Oligodeoxynucleotides
Oligonucleotides
Oligonucleotides - genetics
Protein Structure
Proteins
Pyrimidine nucleotides
Recombinational DNA Repair
Repair
RNA, Small Interfering - metabolism
Sequence Analysis, DNA
Single-stranded DNA
Uridine
title APOBEC3 induces mutations during repair of CRISPR–Cas9-generated DNA breaks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A27%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=APOBEC3%20induces%20mutations%20during%20repair%20of%20CRISPR%E2%80%93Cas9-generated%20DNA%20breaks&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Lei,%20Liqun&rft.date=2018-01-01&rft.volume=25&rft.issue=1&rft.spage=45&rft.epage=52&rft.pages=45-52&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-017-0004-6&rft_dat=%3Cgale_proqu%3EA593382120%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2188972698&rft_id=info:pmid/29323274&rft_galeid=A593382120&rfr_iscdi=true