APOBEC3 induces mutations during repair of CRISPR–Cas9-generated DNA breaks
The APOBEC-AID family of cytidine deaminase prefers single-stranded nucleic acids for cytidine-to-uridine deamination. Single-stranded nucleic acids are commonly involved in the DNA repair system for breaks generated by CRISPR–Cas9. Here, we show in human cells that APOBEC3 can trigger cytidine deam...
Gespeichert in:
Veröffentlicht in: | Nature structural & molecular biology 2018-01, Vol.25 (1), p.45-52 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 52 |
---|---|
container_issue | 1 |
container_start_page | 45 |
container_title | Nature structural & molecular biology |
container_volume | 25 |
creator | Lei, Liqun Chen, Hongquan Xue, Wei Yang, Bei Hu, Bian Wei, Jia Wang, Lijie Cui, Yiqiang Li, Wei Wang, Jianying Yan, Lei Shang, Wanjing Gao, Jimin Sha, Jiahao Zhuang, Min Huang, Xingxu Shen, Bin Yang, Li Chen, Jia |
description | The APOBEC-AID family of cytidine deaminase prefers single-stranded nucleic acids for cytidine-to-uridine deamination. Single-stranded nucleic acids are commonly involved in the DNA repair system for breaks generated by CRISPR–Cas9. Here, we show in human cells that APOBEC3 can trigger cytidine deamination of single-stranded oligodeoxynucleotides, which ultimately results in base substitution mutations in genomic DNA through homology-directed repair (HDR) of Cas9-generated double-strand breaks. In addition, the APOBEC3-catalyzed deamination in genomic single-stranded DNA formed during the repair of Cas9 nickase-generated single-strand breaks in human cells can be further processed to yield mutations mainly involving insertions or deletions (indels). Both APOBEC3-mediated deamination and DNA-repair proteins play important roles in the generation of these indels. Therefore, optimizing conditions for the repair of CRISPR–Cas9-generated DNA breaks, such as using double-stranded donors in HDR or temporarily suppressing endogenous APOBEC3s, can repress these unwanted mutations in genomic DNA.
The APOBEC-AID family of cytidine deaminases target single-stranded nucleic acids for cytidine-to-uridine deamination and can thereby affect DNA repair processes that occur during CRISPR–Cas9-mediated genome editing. |
doi_str_mv | 10.1038/s41594-017-0004-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2188972698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A593382120</galeid><sourcerecordid>A593382120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-11f72b4c0513095e4277d7d2f5352e48a847e701f752851169ca4c5b18f7dacd3</originalsourceid><addsrcrecordid>eNp1kc1OGzEQx62qqEDgAXqpVuqJw4I_Y_uYbqFECgUFOFuOPRuZsrupvSvBjXfoG_ZJ6ih8KBKVD2ONfv8ZjX4IfSb4mGCmThInQvMSE1lijHk5_oD2iOCi1FqJj69_zXbRfkp3GFMhJPuEdqlmlFHJ99DF5Ory22nFitD6wUEqmqG3fejaVPghhnZZRFjZEIuuLqr59Ppq_vfpT2WTLpfQQrQ9-OL7z0mxiGB_pQO0U9v7BIfPdYRuz05vqvNydvljWk1mpeOS9SUhtaQL7rAgDGsBnErppae1YIICV1ZxCRJnSlAlCBlrZ7kTC6Jq6a3zbIS-buauYvd7gNSbu26IbV5pKFFKSzrW6o1a2nswoa27PlrXhOTMRGjGFCUUZ-r4HSo_D01wXQt1yP2twNFWIDM9PPRLO6RkptfzbZZsWBe7lCLUZhVDY-OjIdisHZqNQ5MdmrVDM86ZL8_HDYsG_GviRVoG6AZIq7UhiG_X_3_qPwn8ofw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2188972698</pqid></control><display><type>article</type><title>APOBEC3 induces mutations during repair of CRISPR–Cas9-generated DNA breaks</title><source>MEDLINE</source><source>SpringerLink_现刊</source><source>Nature</source><creator>Lei, Liqun ; Chen, Hongquan ; Xue, Wei ; Yang, Bei ; Hu, Bian ; Wei, Jia ; Wang, Lijie ; Cui, Yiqiang ; Li, Wei ; Wang, Jianying ; Yan, Lei ; Shang, Wanjing ; Gao, Jimin ; Sha, Jiahao ; Zhuang, Min ; Huang, Xingxu ; Shen, Bin ; Yang, Li ; Chen, Jia</creator><creatorcontrib>Lei, Liqun ; Chen, Hongquan ; Xue, Wei ; Yang, Bei ; Hu, Bian ; Wei, Jia ; Wang, Lijie ; Cui, Yiqiang ; Li, Wei ; Wang, Jianying ; Yan, Lei ; Shang, Wanjing ; Gao, Jimin ; Sha, Jiahao ; Zhuang, Min ; Huang, Xingxu ; Shen, Bin ; Yang, Li ; Chen, Jia</creatorcontrib><description>The APOBEC-AID family of cytidine deaminase prefers single-stranded nucleic acids for cytidine-to-uridine deamination. Single-stranded nucleic acids are commonly involved in the DNA repair system for breaks generated by CRISPR–Cas9. Here, we show in human cells that APOBEC3 can trigger cytidine deamination of single-stranded oligodeoxynucleotides, which ultimately results in base substitution mutations in genomic DNA through homology-directed repair (HDR) of Cas9-generated double-strand breaks. In addition, the APOBEC3-catalyzed deamination in genomic single-stranded DNA formed during the repair of Cas9 nickase-generated single-strand breaks in human cells can be further processed to yield mutations mainly involving insertions or deletions (indels). Both APOBEC3-mediated deamination and DNA-repair proteins play important roles in the generation of these indels. Therefore, optimizing conditions for the repair of CRISPR–Cas9-generated DNA breaks, such as using double-stranded donors in HDR or temporarily suppressing endogenous APOBEC3s, can repress these unwanted mutations in genomic DNA.
The APOBEC-AID family of cytidine deaminases target single-stranded nucleic acids for cytidine-to-uridine deamination and can thereby affect DNA repair processes that occur during CRISPR–Cas9-mediated genome editing.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-017-0004-6</identifier><identifier>PMID: 29323274</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/337 ; 631/45 ; APOBEC Deaminases ; Biochemistry ; Biological Microscopy ; Biological research ; Biomedical and Life Sciences ; Cells (Biology) ; CRISPR ; CRISPR-Cas Systems ; Cytidine - chemistry ; Cytidine deaminase ; Cytidine Deaminase - genetics ; Cytosine Deaminase - chemistry ; Deamination ; Deoxyribonucleic acid ; DNA ; DNA Breaks, Double-Stranded ; DNA damage ; DNA Repair ; DNA, Single-Stranded ; Gene mutation ; Genetic aspects ; Genomes ; Genomics ; Health aspects ; HEK293 Cells ; HeLa Cells ; Homology ; Humans ; INDEL Mutation ; Life Sciences ; Membrane Biology ; Mutation ; Nucleic acids ; Oligodeoxynucleotides ; Oligonucleotides ; Oligonucleotides - genetics ; Protein Structure ; Proteins ; Pyrimidine nucleotides ; Recombinational DNA Repair ; Repair ; RNA, Small Interfering - metabolism ; Sequence Analysis, DNA ; Single-stranded DNA ; Uridine</subject><ispartof>Nature structural & molecular biology, 2018-01, Vol.25 (1), p.45-52</ispartof><rights>The Author(s) 2017</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-11f72b4c0513095e4277d7d2f5352e48a847e701f752851169ca4c5b18f7dacd3</citedby><cites>FETCH-LOGICAL-c473t-11f72b4c0513095e4277d7d2f5352e48a847e701f752851169ca4c5b18f7dacd3</cites><orcidid>0000-0001-8833-7473 ; 0000-0002-8946-8448 ; 0000-0002-4242-2899 ; 0000-0001-5389-3859</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-017-0004-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-017-0004-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29323274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lei, Liqun</creatorcontrib><creatorcontrib>Chen, Hongquan</creatorcontrib><creatorcontrib>Xue, Wei</creatorcontrib><creatorcontrib>Yang, Bei</creatorcontrib><creatorcontrib>Hu, Bian</creatorcontrib><creatorcontrib>Wei, Jia</creatorcontrib><creatorcontrib>Wang, Lijie</creatorcontrib><creatorcontrib>Cui, Yiqiang</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Wang, Jianying</creatorcontrib><creatorcontrib>Yan, Lei</creatorcontrib><creatorcontrib>Shang, Wanjing</creatorcontrib><creatorcontrib>Gao, Jimin</creatorcontrib><creatorcontrib>Sha, Jiahao</creatorcontrib><creatorcontrib>Zhuang, Min</creatorcontrib><creatorcontrib>Huang, Xingxu</creatorcontrib><creatorcontrib>Shen, Bin</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Chen, Jia</creatorcontrib><title>APOBEC3 induces mutations during repair of CRISPR–Cas9-generated DNA breaks</title><title>Nature structural & molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>The APOBEC-AID family of cytidine deaminase prefers single-stranded nucleic acids for cytidine-to-uridine deamination. Single-stranded nucleic acids are commonly involved in the DNA repair system for breaks generated by CRISPR–Cas9. Here, we show in human cells that APOBEC3 can trigger cytidine deamination of single-stranded oligodeoxynucleotides, which ultimately results in base substitution mutations in genomic DNA through homology-directed repair (HDR) of Cas9-generated double-strand breaks. In addition, the APOBEC3-catalyzed deamination in genomic single-stranded DNA formed during the repair of Cas9 nickase-generated single-strand breaks in human cells can be further processed to yield mutations mainly involving insertions or deletions (indels). Both APOBEC3-mediated deamination and DNA-repair proteins play important roles in the generation of these indels. Therefore, optimizing conditions for the repair of CRISPR–Cas9-generated DNA breaks, such as using double-stranded donors in HDR or temporarily suppressing endogenous APOBEC3s, can repress these unwanted mutations in genomic DNA.
The APOBEC-AID family of cytidine deaminases target single-stranded nucleic acids for cytidine-to-uridine deamination and can thereby affect DNA repair processes that occur during CRISPR–Cas9-mediated genome editing.</description><subject>631/337</subject><subject>631/45</subject><subject>APOBEC Deaminases</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biological research</subject><subject>Biomedical and Life Sciences</subject><subject>Cells (Biology)</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Cytidine - chemistry</subject><subject>Cytidine deaminase</subject><subject>Cytidine Deaminase - genetics</subject><subject>Cytosine Deaminase - chemistry</subject><subject>Deamination</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Breaks, Double-Stranded</subject><subject>DNA damage</subject><subject>DNA Repair</subject><subject>DNA, Single-Stranded</subject><subject>Gene mutation</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Health aspects</subject><subject>HEK293 Cells</subject><subject>HeLa Cells</subject><subject>Homology</subject><subject>Humans</subject><subject>INDEL Mutation</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Mutation</subject><subject>Nucleic acids</subject><subject>Oligodeoxynucleotides</subject><subject>Oligonucleotides</subject><subject>Oligonucleotides - genetics</subject><subject>Protein Structure</subject><subject>Proteins</subject><subject>Pyrimidine nucleotides</subject><subject>Recombinational DNA Repair</subject><subject>Repair</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Sequence Analysis, DNA</subject><subject>Single-stranded DNA</subject><subject>Uridine</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kc1OGzEQx62qqEDgAXqpVuqJw4I_Y_uYbqFECgUFOFuOPRuZsrupvSvBjXfoG_ZJ6ih8KBKVD2ONfv8ZjX4IfSb4mGCmThInQvMSE1lijHk5_oD2iOCi1FqJj69_zXbRfkp3GFMhJPuEdqlmlFHJ99DF5Ory22nFitD6wUEqmqG3fejaVPghhnZZRFjZEIuuLqr59Ppq_vfpT2WTLpfQQrQ9-OL7z0mxiGB_pQO0U9v7BIfPdYRuz05vqvNydvljWk1mpeOS9SUhtaQL7rAgDGsBnErppae1YIICV1ZxCRJnSlAlCBlrZ7kTC6Jq6a3zbIS-buauYvd7gNSbu26IbV5pKFFKSzrW6o1a2nswoa27PlrXhOTMRGjGFCUUZ-r4HSo_D01wXQt1yP2twNFWIDM9PPRLO6RkptfzbZZsWBe7lCLUZhVDY-OjIdisHZqNQ5MdmrVDM86ZL8_HDYsG_GviRVoG6AZIq7UhiG_X_3_qPwn8ofw</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Lei, Liqun</creator><creator>Chen, Hongquan</creator><creator>Xue, Wei</creator><creator>Yang, Bei</creator><creator>Hu, Bian</creator><creator>Wei, Jia</creator><creator>Wang, Lijie</creator><creator>Cui, Yiqiang</creator><creator>Li, Wei</creator><creator>Wang, Jianying</creator><creator>Yan, Lei</creator><creator>Shang, Wanjing</creator><creator>Gao, Jimin</creator><creator>Sha, Jiahao</creator><creator>Zhuang, Min</creator><creator>Huang, Xingxu</creator><creator>Shen, Bin</creator><creator>Yang, Li</creator><creator>Chen, Jia</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0001-8833-7473</orcidid><orcidid>https://orcid.org/0000-0002-8946-8448</orcidid><orcidid>https://orcid.org/0000-0002-4242-2899</orcidid><orcidid>https://orcid.org/0000-0001-5389-3859</orcidid></search><sort><creationdate>20180101</creationdate><title>APOBEC3 induces mutations during repair of CRISPR–Cas9-generated DNA breaks</title><author>Lei, Liqun ; Chen, Hongquan ; Xue, Wei ; Yang, Bei ; Hu, Bian ; Wei, Jia ; Wang, Lijie ; Cui, Yiqiang ; Li, Wei ; Wang, Jianying ; Yan, Lei ; Shang, Wanjing ; Gao, Jimin ; Sha, Jiahao ; Zhuang, Min ; Huang, Xingxu ; Shen, Bin ; Yang, Li ; Chen, Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-11f72b4c0513095e4277d7d2f5352e48a847e701f752851169ca4c5b18f7dacd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/337</topic><topic>631/45</topic><topic>APOBEC Deaminases</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biological research</topic><topic>Biomedical and Life Sciences</topic><topic>Cells (Biology)</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Cytidine - chemistry</topic><topic>Cytidine deaminase</topic><topic>Cytidine Deaminase - genetics</topic><topic>Cytosine Deaminase - chemistry</topic><topic>Deamination</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Breaks, Double-Stranded</topic><topic>DNA damage</topic><topic>DNA Repair</topic><topic>DNA, Single-Stranded</topic><topic>Gene mutation</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Health aspects</topic><topic>HEK293 Cells</topic><topic>HeLa Cells</topic><topic>Homology</topic><topic>Humans</topic><topic>INDEL Mutation</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Mutation</topic><topic>Nucleic acids</topic><topic>Oligodeoxynucleotides</topic><topic>Oligonucleotides</topic><topic>Oligonucleotides - genetics</topic><topic>Protein Structure</topic><topic>Proteins</topic><topic>Pyrimidine nucleotides</topic><topic>Recombinational DNA Repair</topic><topic>Repair</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Sequence Analysis, DNA</topic><topic>Single-stranded DNA</topic><topic>Uridine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Liqun</creatorcontrib><creatorcontrib>Chen, Hongquan</creatorcontrib><creatorcontrib>Xue, Wei</creatorcontrib><creatorcontrib>Yang, Bei</creatorcontrib><creatorcontrib>Hu, Bian</creatorcontrib><creatorcontrib>Wei, Jia</creatorcontrib><creatorcontrib>Wang, Lijie</creatorcontrib><creatorcontrib>Cui, Yiqiang</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Wang, Jianying</creatorcontrib><creatorcontrib>Yan, Lei</creatorcontrib><creatorcontrib>Shang, Wanjing</creatorcontrib><creatorcontrib>Gao, Jimin</creatorcontrib><creatorcontrib>Sha, Jiahao</creatorcontrib><creatorcontrib>Zhuang, Min</creatorcontrib><creatorcontrib>Huang, Xingxu</creatorcontrib><creatorcontrib>Shen, Bin</creatorcontrib><creatorcontrib>Yang, Li</creatorcontrib><creatorcontrib>Chen, Jia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Complete (ProQuest Database)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library (ProQuest Database)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Nature structural & molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Liqun</au><au>Chen, Hongquan</au><au>Xue, Wei</au><au>Yang, Bei</au><au>Hu, Bian</au><au>Wei, Jia</au><au>Wang, Lijie</au><au>Cui, Yiqiang</au><au>Li, Wei</au><au>Wang, Jianying</au><au>Yan, Lei</au><au>Shang, Wanjing</au><au>Gao, Jimin</au><au>Sha, Jiahao</au><au>Zhuang, Min</au><au>Huang, Xingxu</au><au>Shen, Bin</au><au>Yang, Li</au><au>Chen, Jia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>APOBEC3 induces mutations during repair of CRISPR–Cas9-generated DNA breaks</atitle><jtitle>Nature structural & molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>25</volume><issue>1</issue><spage>45</spage><epage>52</epage><pages>45-52</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>The APOBEC-AID family of cytidine deaminase prefers single-stranded nucleic acids for cytidine-to-uridine deamination. Single-stranded nucleic acids are commonly involved in the DNA repair system for breaks generated by CRISPR–Cas9. Here, we show in human cells that APOBEC3 can trigger cytidine deamination of single-stranded oligodeoxynucleotides, which ultimately results in base substitution mutations in genomic DNA through homology-directed repair (HDR) of Cas9-generated double-strand breaks. In addition, the APOBEC3-catalyzed deamination in genomic single-stranded DNA formed during the repair of Cas9 nickase-generated single-strand breaks in human cells can be further processed to yield mutations mainly involving insertions or deletions (indels). Both APOBEC3-mediated deamination and DNA-repair proteins play important roles in the generation of these indels. Therefore, optimizing conditions for the repair of CRISPR–Cas9-generated DNA breaks, such as using double-stranded donors in HDR or temporarily suppressing endogenous APOBEC3s, can repress these unwanted mutations in genomic DNA.
The APOBEC-AID family of cytidine deaminases target single-stranded nucleic acids for cytidine-to-uridine deamination and can thereby affect DNA repair processes that occur during CRISPR–Cas9-mediated genome editing.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>29323274</pmid><doi>10.1038/s41594-017-0004-6</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8833-7473</orcidid><orcidid>https://orcid.org/0000-0002-8946-8448</orcidid><orcidid>https://orcid.org/0000-0002-4242-2899</orcidid><orcidid>https://orcid.org/0000-0001-5389-3859</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-9993 |
ispartof | Nature structural & molecular biology, 2018-01, Vol.25 (1), p.45-52 |
issn | 1545-9993 1545-9985 |
language | eng |
recordid | cdi_proquest_journals_2188972698 |
source | MEDLINE; SpringerLink_现刊; Nature |
subjects | 631/337 631/45 APOBEC Deaminases Biochemistry Biological Microscopy Biological research Biomedical and Life Sciences Cells (Biology) CRISPR CRISPR-Cas Systems Cytidine - chemistry Cytidine deaminase Cytidine Deaminase - genetics Cytosine Deaminase - chemistry Deamination Deoxyribonucleic acid DNA DNA Breaks, Double-Stranded DNA damage DNA Repair DNA, Single-Stranded Gene mutation Genetic aspects Genomes Genomics Health aspects HEK293 Cells HeLa Cells Homology Humans INDEL Mutation Life Sciences Membrane Biology Mutation Nucleic acids Oligodeoxynucleotides Oligonucleotides Oligonucleotides - genetics Protein Structure Proteins Pyrimidine nucleotides Recombinational DNA Repair Repair RNA, Small Interfering - metabolism Sequence Analysis, DNA Single-stranded DNA Uridine |
title | APOBEC3 induces mutations during repair of CRISPR–Cas9-generated DNA breaks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A27%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=APOBEC3%20induces%20mutations%20during%20repair%20of%20CRISPR%E2%80%93Cas9-generated%20DNA%20breaks&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Lei,%20Liqun&rft.date=2018-01-01&rft.volume=25&rft.issue=1&rft.spage=45&rft.epage=52&rft.pages=45-52&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-017-0004-6&rft_dat=%3Cgale_proqu%3EA593382120%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2188972698&rft_id=info:pmid/29323274&rft_galeid=A593382120&rfr_iscdi=true |