APOBEC3 induces mutations during repair of CRISPR–Cas9-generated DNA breaks
The APOBEC-AID family of cytidine deaminase prefers single-stranded nucleic acids for cytidine-to-uridine deamination. Single-stranded nucleic acids are commonly involved in the DNA repair system for breaks generated by CRISPR–Cas9. Here, we show in human cells that APOBEC3 can trigger cytidine deam...
Gespeichert in:
Veröffentlicht in: | Nature structural & molecular biology 2018-01, Vol.25 (1), p.45-52 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The APOBEC-AID family of cytidine deaminase prefers single-stranded nucleic acids for cytidine-to-uridine deamination. Single-stranded nucleic acids are commonly involved in the DNA repair system for breaks generated by CRISPR–Cas9. Here, we show in human cells that APOBEC3 can trigger cytidine deamination of single-stranded oligodeoxynucleotides, which ultimately results in base substitution mutations in genomic DNA through homology-directed repair (HDR) of Cas9-generated double-strand breaks. In addition, the APOBEC3-catalyzed deamination in genomic single-stranded DNA formed during the repair of Cas9 nickase-generated single-strand breaks in human cells can be further processed to yield mutations mainly involving insertions or deletions (indels). Both APOBEC3-mediated deamination and DNA-repair proteins play important roles in the generation of these indels. Therefore, optimizing conditions for the repair of CRISPR–Cas9-generated DNA breaks, such as using double-stranded donors in HDR or temporarily suppressing endogenous APOBEC3s, can repress these unwanted mutations in genomic DNA.
The APOBEC-AID family of cytidine deaminases target single-stranded nucleic acids for cytidine-to-uridine deamination and can thereby affect DNA repair processes that occur during CRISPR–Cas9-mediated genome editing. |
---|---|
ISSN: | 1545-9993 1545-9985 |
DOI: | 10.1038/s41594-017-0004-6 |