Neighborhood grid clustering and its application in fault diagnosis of satellite power system

Data-driven fault diagnosis, known to be simple and convenient, is more suitable for diagnosing the complicated spacecraft systems, e.g. the satellite power system. Nevertheless, it is difficult to extract the rules for diagnosing from unlabeled data. In this paper, a clustering approach based on ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering Journal of aerospace engineering, 2019-03, Vol.233 (4), p.1270-1283
Hauptverfasser: Suo, Mingliang, Zhu, Baolong, Zhou, Ding, An, Ruoming, Li, Shunli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1283
container_issue 4
container_start_page 1270
container_title Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering
container_volume 233
creator Suo, Mingliang
Zhu, Baolong
Zhou, Ding
An, Ruoming
Li, Shunli
description Data-driven fault diagnosis, known to be simple and convenient, is more suitable for diagnosing the complicated spacecraft systems, e.g. the satellite power system. Nevertheless, it is difficult to extract the rules for diagnosing from unlabeled data. In this paper, a clustering approach based on neighborhood relationship and spatial grid partition is proposed to compensate for the above deficiency. In order to deal with the data-driven fault diagnosis issue, a diagnostic strategy is designed, which is a combination of the proposed clustering method and the entropy weight. Finally, multiple experiments, consisting of the artificial data clustering, comparison experiments on satellite data mining, and a case of fault diagnosis on satellite power system, are carried out to illustrate the versatility and superiority of the proposed method.
doi_str_mv 10.1177/0954410017751991
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2188566182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954410017751991</sage_id><sourcerecordid>2188566182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-e58bcba21584cf58bc83943c7d17e175c27ae44481f681ad2db48fd8e77627383</originalsourceid><addsrcrecordid>eNp1UM9LwzAUDqLgnN49BjxX89KkSY8y1AlDL3qUkiZpl9E1NUmR_fe2TBAE3-W9x_cLPoSugdwCCHFHSs4YEDLdHMoSTtCCEgZZTig_RYsZzmb8HF3EuCPT8CJfoI8X69pt7cPWe4Pb4AzW3RiTDa5vseoNdiliNQyd0yo532PX40aNXcLGqbb30UXsGxxVsl3nksWD_7IBx8Pksb9EZ43qor362Uv0_vjwtlpnm9en59X9JtM5FymzXNa6VhS4ZLqZH5mXLNfCgLAguKZCWcaYhKaQoAw1NZONkVaIgopc5kt0c_Qdgv8cbUzVzo-hnyIrClLyogBJJxY5snTwMQbbVENwexUOFZBqLrH6W-IkyY6SqFr7a_ov_xv5n3HJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2188566182</pqid></control><display><type>article</type><title>Neighborhood grid clustering and its application in fault diagnosis of satellite power system</title><source>Access via SAGE</source><creator>Suo, Mingliang ; Zhu, Baolong ; Zhou, Ding ; An, Ruoming ; Li, Shunli</creator><creatorcontrib>Suo, Mingliang ; Zhu, Baolong ; Zhou, Ding ; An, Ruoming ; Li, Shunli</creatorcontrib><description>Data-driven fault diagnosis, known to be simple and convenient, is more suitable for diagnosing the complicated spacecraft systems, e.g. the satellite power system. Nevertheless, it is difficult to extract the rules for diagnosing from unlabeled data. In this paper, a clustering approach based on neighborhood relationship and spatial grid partition is proposed to compensate for the above deficiency. In order to deal with the data-driven fault diagnosis issue, a diagnostic strategy is designed, which is a combination of the proposed clustering method and the entropy weight. Finally, multiple experiments, consisting of the artificial data clustering, comparison experiments on satellite data mining, and a case of fault diagnosis on satellite power system, are carried out to illustrate the versatility and superiority of the proposed method.</description><identifier>ISSN: 0954-4100</identifier><identifier>EISSN: 2041-3025</identifier><identifier>DOI: 10.1177/0954410017751991</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Clustering ; Data mining ; Diagnostic systems ; Fault diagnosis ; Spacecraft ; Weight</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering, 2019-03, Vol.233 (4), p.1270-1283</ispartof><rights>IMechE 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-e58bcba21584cf58bc83943c7d17e175c27ae44481f681ad2db48fd8e77627383</citedby><cites>FETCH-LOGICAL-c357t-e58bcba21584cf58bc83943c7d17e175c27ae44481f681ad2db48fd8e77627383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954410017751991$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954410017751991$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Suo, Mingliang</creatorcontrib><creatorcontrib>Zhu, Baolong</creatorcontrib><creatorcontrib>Zhou, Ding</creatorcontrib><creatorcontrib>An, Ruoming</creatorcontrib><creatorcontrib>Li, Shunli</creatorcontrib><title>Neighborhood grid clustering and its application in fault diagnosis of satellite power system</title><title>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</title><description>Data-driven fault diagnosis, known to be simple and convenient, is more suitable for diagnosing the complicated spacecraft systems, e.g. the satellite power system. Nevertheless, it is difficult to extract the rules for diagnosing from unlabeled data. In this paper, a clustering approach based on neighborhood relationship and spatial grid partition is proposed to compensate for the above deficiency. In order to deal with the data-driven fault diagnosis issue, a diagnostic strategy is designed, which is a combination of the proposed clustering method and the entropy weight. Finally, multiple experiments, consisting of the artificial data clustering, comparison experiments on satellite data mining, and a case of fault diagnosis on satellite power system, are carried out to illustrate the versatility and superiority of the proposed method.</description><subject>Clustering</subject><subject>Data mining</subject><subject>Diagnostic systems</subject><subject>Fault diagnosis</subject><subject>Spacecraft</subject><subject>Weight</subject><issn>0954-4100</issn><issn>2041-3025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UM9LwzAUDqLgnN49BjxX89KkSY8y1AlDL3qUkiZpl9E1NUmR_fe2TBAE3-W9x_cLPoSugdwCCHFHSs4YEDLdHMoSTtCCEgZZTig_RYsZzmb8HF3EuCPT8CJfoI8X69pt7cPWe4Pb4AzW3RiTDa5vseoNdiliNQyd0yo532PX40aNXcLGqbb30UXsGxxVsl3nksWD_7IBx8Pksb9EZ43qor362Uv0_vjwtlpnm9en59X9JtM5FymzXNa6VhS4ZLqZH5mXLNfCgLAguKZCWcaYhKaQoAw1NZONkVaIgopc5kt0c_Qdgv8cbUzVzo-hnyIrClLyogBJJxY5snTwMQbbVENwexUOFZBqLrH6W-IkyY6SqFr7a_ov_xv5n3HJ</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Suo, Mingliang</creator><creator>Zhu, Baolong</creator><creator>Zhou, Ding</creator><creator>An, Ruoming</creator><creator>Li, Shunli</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190301</creationdate><title>Neighborhood grid clustering and its application in fault diagnosis of satellite power system</title><author>Suo, Mingliang ; Zhu, Baolong ; Zhou, Ding ; An, Ruoming ; Li, Shunli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-e58bcba21584cf58bc83943c7d17e175c27ae44481f681ad2db48fd8e77627383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Clustering</topic><topic>Data mining</topic><topic>Diagnostic systems</topic><topic>Fault diagnosis</topic><topic>Spacecraft</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suo, Mingliang</creatorcontrib><creatorcontrib>Zhu, Baolong</creatorcontrib><creatorcontrib>Zhou, Ding</creatorcontrib><creatorcontrib>An, Ruoming</creatorcontrib><creatorcontrib>Li, Shunli</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suo, Mingliang</au><au>Zhu, Baolong</au><au>Zhou, Ding</au><au>An, Ruoming</au><au>Li, Shunli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neighborhood grid clustering and its application in fault diagnosis of satellite power system</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</jtitle><date>2019-03-01</date><risdate>2019</risdate><volume>233</volume><issue>4</issue><spage>1270</spage><epage>1283</epage><pages>1270-1283</pages><issn>0954-4100</issn><eissn>2041-3025</eissn><abstract>Data-driven fault diagnosis, known to be simple and convenient, is more suitable for diagnosing the complicated spacecraft systems, e.g. the satellite power system. Nevertheless, it is difficult to extract the rules for diagnosing from unlabeled data. In this paper, a clustering approach based on neighborhood relationship and spatial grid partition is proposed to compensate for the above deficiency. In order to deal with the data-driven fault diagnosis issue, a diagnostic strategy is designed, which is a combination of the proposed clustering method and the entropy weight. Finally, multiple experiments, consisting of the artificial data clustering, comparison experiments on satellite data mining, and a case of fault diagnosis on satellite power system, are carried out to illustrate the versatility and superiority of the proposed method.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954410017751991</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0954-4100
ispartof Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering, 2019-03, Vol.233 (4), p.1270-1283
issn 0954-4100
2041-3025
language eng
recordid cdi_proquest_journals_2188566182
source Access via SAGE
subjects Clustering
Data mining
Diagnostic systems
Fault diagnosis
Spacecraft
Weight
title Neighborhood grid clustering and its application in fault diagnosis of satellite power system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A03%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neighborhood%20grid%20clustering%20and%20its%20application%20in%20fault%20diagnosis%20of%20satellite%20power%20system&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20G,%20Journal%20of%20aerospace%20engineering&rft.au=Suo,%20Mingliang&rft.date=2019-03-01&rft.volume=233&rft.issue=4&rft.spage=1270&rft.epage=1283&rft.pages=1270-1283&rft.issn=0954-4100&rft.eissn=2041-3025&rft_id=info:doi/10.1177/0954410017751991&rft_dat=%3Cproquest_cross%3E2188566182%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2188566182&rft_id=info:pmid/&rft_sage_id=10.1177_0954410017751991&rfr_iscdi=true