Neighborhood grid clustering and its application in fault diagnosis of satellite power system
Data-driven fault diagnosis, known to be simple and convenient, is more suitable for diagnosing the complicated spacecraft systems, e.g. the satellite power system. Nevertheless, it is difficult to extract the rules for diagnosing from unlabeled data. In this paper, a clustering approach based on ne...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering Journal of aerospace engineering, 2019-03, Vol.233 (4), p.1270-1283 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1283 |
---|---|
container_issue | 4 |
container_start_page | 1270 |
container_title | Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering |
container_volume | 233 |
creator | Suo, Mingliang Zhu, Baolong Zhou, Ding An, Ruoming Li, Shunli |
description | Data-driven fault diagnosis, known to be simple and convenient, is more suitable for diagnosing the complicated spacecraft systems, e.g. the satellite power system. Nevertheless, it is difficult to extract the rules for diagnosing from unlabeled data. In this paper, a clustering approach based on neighborhood relationship and spatial grid partition is proposed to compensate for the above deficiency. In order to deal with the data-driven fault diagnosis issue, a diagnostic strategy is designed, which is a combination of the proposed clustering method and the entropy weight. Finally, multiple experiments, consisting of the artificial data clustering, comparison experiments on satellite data mining, and a case of fault diagnosis on satellite power system, are carried out to illustrate the versatility and superiority of the proposed method. |
doi_str_mv | 10.1177/0954410017751991 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2188566182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954410017751991</sage_id><sourcerecordid>2188566182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-e58bcba21584cf58bc83943c7d17e175c27ae44481f681ad2db48fd8e77627383</originalsourceid><addsrcrecordid>eNp1UM9LwzAUDqLgnN49BjxX89KkSY8y1AlDL3qUkiZpl9E1NUmR_fe2TBAE3-W9x_cLPoSugdwCCHFHSs4YEDLdHMoSTtCCEgZZTig_RYsZzmb8HF3EuCPT8CJfoI8X69pt7cPWe4Pb4AzW3RiTDa5vseoNdiliNQyd0yo532PX40aNXcLGqbb30UXsGxxVsl3nksWD_7IBx8Pksb9EZ43qor362Uv0_vjwtlpnm9en59X9JtM5FymzXNa6VhS4ZLqZH5mXLNfCgLAguKZCWcaYhKaQoAw1NZONkVaIgopc5kt0c_Qdgv8cbUzVzo-hnyIrClLyogBJJxY5snTwMQbbVENwexUOFZBqLrH6W-IkyY6SqFr7a_ov_xv5n3HJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2188566182</pqid></control><display><type>article</type><title>Neighborhood grid clustering and its application in fault diagnosis of satellite power system</title><source>Access via SAGE</source><creator>Suo, Mingliang ; Zhu, Baolong ; Zhou, Ding ; An, Ruoming ; Li, Shunli</creator><creatorcontrib>Suo, Mingliang ; Zhu, Baolong ; Zhou, Ding ; An, Ruoming ; Li, Shunli</creatorcontrib><description>Data-driven fault diagnosis, known to be simple and convenient, is more suitable for diagnosing the complicated spacecraft systems, e.g. the satellite power system. Nevertheless, it is difficult to extract the rules for diagnosing from unlabeled data. In this paper, a clustering approach based on neighborhood relationship and spatial grid partition is proposed to compensate for the above deficiency. In order to deal with the data-driven fault diagnosis issue, a diagnostic strategy is designed, which is a combination of the proposed clustering method and the entropy weight. Finally, multiple experiments, consisting of the artificial data clustering, comparison experiments on satellite data mining, and a case of fault diagnosis on satellite power system, are carried out to illustrate the versatility and superiority of the proposed method.</description><identifier>ISSN: 0954-4100</identifier><identifier>EISSN: 2041-3025</identifier><identifier>DOI: 10.1177/0954410017751991</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Clustering ; Data mining ; Diagnostic systems ; Fault diagnosis ; Spacecraft ; Weight</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering, 2019-03, Vol.233 (4), p.1270-1283</ispartof><rights>IMechE 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-e58bcba21584cf58bc83943c7d17e175c27ae44481f681ad2db48fd8e77627383</citedby><cites>FETCH-LOGICAL-c357t-e58bcba21584cf58bc83943c7d17e175c27ae44481f681ad2db48fd8e77627383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954410017751991$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954410017751991$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Suo, Mingliang</creatorcontrib><creatorcontrib>Zhu, Baolong</creatorcontrib><creatorcontrib>Zhou, Ding</creatorcontrib><creatorcontrib>An, Ruoming</creatorcontrib><creatorcontrib>Li, Shunli</creatorcontrib><title>Neighborhood grid clustering and its application in fault diagnosis of satellite power system</title><title>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</title><description>Data-driven fault diagnosis, known to be simple and convenient, is more suitable for diagnosing the complicated spacecraft systems, e.g. the satellite power system. Nevertheless, it is difficult to extract the rules for diagnosing from unlabeled data. In this paper, a clustering approach based on neighborhood relationship and spatial grid partition is proposed to compensate for the above deficiency. In order to deal with the data-driven fault diagnosis issue, a diagnostic strategy is designed, which is a combination of the proposed clustering method and the entropy weight. Finally, multiple experiments, consisting of the artificial data clustering, comparison experiments on satellite data mining, and a case of fault diagnosis on satellite power system, are carried out to illustrate the versatility and superiority of the proposed method.</description><subject>Clustering</subject><subject>Data mining</subject><subject>Diagnostic systems</subject><subject>Fault diagnosis</subject><subject>Spacecraft</subject><subject>Weight</subject><issn>0954-4100</issn><issn>2041-3025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UM9LwzAUDqLgnN49BjxX89KkSY8y1AlDL3qUkiZpl9E1NUmR_fe2TBAE3-W9x_cLPoSugdwCCHFHSs4YEDLdHMoSTtCCEgZZTig_RYsZzmb8HF3EuCPT8CJfoI8X69pt7cPWe4Pb4AzW3RiTDa5vseoNdiliNQyd0yo532PX40aNXcLGqbb30UXsGxxVsl3nksWD_7IBx8Pksb9EZ43qor362Uv0_vjwtlpnm9en59X9JtM5FymzXNa6VhS4ZLqZH5mXLNfCgLAguKZCWcaYhKaQoAw1NZONkVaIgopc5kt0c_Qdgv8cbUzVzo-hnyIrClLyogBJJxY5snTwMQbbVENwexUOFZBqLrH6W-IkyY6SqFr7a_ov_xv5n3HJ</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Suo, Mingliang</creator><creator>Zhu, Baolong</creator><creator>Zhou, Ding</creator><creator>An, Ruoming</creator><creator>Li, Shunli</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190301</creationdate><title>Neighborhood grid clustering and its application in fault diagnosis of satellite power system</title><author>Suo, Mingliang ; Zhu, Baolong ; Zhou, Ding ; An, Ruoming ; Li, Shunli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-e58bcba21584cf58bc83943c7d17e175c27ae44481f681ad2db48fd8e77627383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Clustering</topic><topic>Data mining</topic><topic>Diagnostic systems</topic><topic>Fault diagnosis</topic><topic>Spacecraft</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suo, Mingliang</creatorcontrib><creatorcontrib>Zhu, Baolong</creatorcontrib><creatorcontrib>Zhou, Ding</creatorcontrib><creatorcontrib>An, Ruoming</creatorcontrib><creatorcontrib>Li, Shunli</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suo, Mingliang</au><au>Zhu, Baolong</au><au>Zhou, Ding</au><au>An, Ruoming</au><au>Li, Shunli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neighborhood grid clustering and its application in fault diagnosis of satellite power system</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</jtitle><date>2019-03-01</date><risdate>2019</risdate><volume>233</volume><issue>4</issue><spage>1270</spage><epage>1283</epage><pages>1270-1283</pages><issn>0954-4100</issn><eissn>2041-3025</eissn><abstract>Data-driven fault diagnosis, known to be simple and convenient, is more suitable for diagnosing the complicated spacecraft systems, e.g. the satellite power system. Nevertheless, it is difficult to extract the rules for diagnosing from unlabeled data. In this paper, a clustering approach based on neighborhood relationship and spatial grid partition is proposed to compensate for the above deficiency. In order to deal with the data-driven fault diagnosis issue, a diagnostic strategy is designed, which is a combination of the proposed clustering method and the entropy weight. Finally, multiple experiments, consisting of the artificial data clustering, comparison experiments on satellite data mining, and a case of fault diagnosis on satellite power system, are carried out to illustrate the versatility and superiority of the proposed method.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954410017751991</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-4100 |
ispartof | Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering, 2019-03, Vol.233 (4), p.1270-1283 |
issn | 0954-4100 2041-3025 |
language | eng |
recordid | cdi_proquest_journals_2188566182 |
source | Access via SAGE |
subjects | Clustering Data mining Diagnostic systems Fault diagnosis Spacecraft Weight |
title | Neighborhood grid clustering and its application in fault diagnosis of satellite power system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A03%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neighborhood%20grid%20clustering%20and%20its%20application%20in%20fault%20diagnosis%20of%20satellite%20power%20system&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20G,%20Journal%20of%20aerospace%20engineering&rft.au=Suo,%20Mingliang&rft.date=2019-03-01&rft.volume=233&rft.issue=4&rft.spage=1270&rft.epage=1283&rft.pages=1270-1283&rft.issn=0954-4100&rft.eissn=2041-3025&rft_id=info:doi/10.1177/0954410017751991&rft_dat=%3Cproquest_cross%3E2188566182%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2188566182&rft_id=info:pmid/&rft_sage_id=10.1177_0954410017751991&rfr_iscdi=true |