Predictive Modeling With Psychological Panel Data
Longitudinal panels include several thousand participants and variables. Traditionally, psychologists analyze only a few variables - partly because common unregularized linear models perform poorly when the number of variables (p) approaches the number of observations (N). Predictive modeling method...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für Psychologie 2018, Vol.226 (4), p.246-258 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 258 |
---|---|
container_issue | 4 |
container_start_page | 246 |
container_title | Zeitschrift für Psychologie |
container_volume | 226 |
creator | Pargent, Florian Albert-von der Gönna, Johannes |
description | Longitudinal panels include several thousand participants and variables. Traditionally, psychologists analyze only a few variables - partly because common unregularized linear models perform poorly when the number of variables (p) approaches the number of observations (N). Predictive modeling methods can be used when N p situations arise in psychological research. We illustrate these techniques on exemplary variables from the German GESIS Panel, while describing the choice of preprocessing, model classes, resampling techniques, hyperparameter tuning, and performance measures. In analyses with about 2,000 subjects and variables each, we predict panelists' gender, sick days, an evaluation of US President Trump, income, life satisfaction, and sleep satisfaction. Elastic net and random forest models were compared to dummy predictions in benchmark experiments. While good performance was achieved, the linear elastic net performed similar to the nonlinear random forest. Elastic nets were refitted to extract the ten most important predictors. Their interpretation validates our approach, and further modeling options are discussed. Code can be found at https://osf.io/zpse3/ |
doi_str_mv | 10.1027/2151-2604/a000343 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2188254101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2188254101</sourcerecordid><originalsourceid>FETCH-LOGICAL-a353t-58b6005a53f6888bdcfb66a9e00b7a32aef20b9bc4168709bb4780724b362ed73</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gLeAV2NnP7LZHKVaFSr2oHhcZjebNiUmcXcr1F9vQounGYb3g3kIuaZwR4HlM0YzmjIJYoYAwAU_IZP_2-m4F5AqnsM5uQhhCyAZk3xC6Mq7srax_nHJa1e6pm7XyWcdN8kq7O2ma7p1bbFJVti6JnnAiJfkrMImuKvjnJKPxeP7_Dldvj29zO-XKfKMxzRTRgJkmPFKKqVMaSsjJRYOwOTIGbqKgSmMFVSqHApjRK4gZ8JwyVyZ8ym5OeT2vvveuRD1ttv5dqjUjCrFMkGBDip6UFnfheBdpXtff6Hfawp6JKNHCnqkoI9kBs_twYM96n54E32sbeOC3Xnv2qh_q14PeLTQTEj-B1sbY_E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2188254101</pqid></control><display><type>article</type><title>Predictive Modeling With Psychological Panel Data</title><source>APA PsycARTICLES</source><source>PsyJOURNALS</source><creator>Pargent, Florian ; Albert-von der Gönna, Johannes</creator><contributor>Cheung, Mike W.-L ; Jak, Suzanne</contributor><creatorcontrib>Pargent, Florian ; Albert-von der Gönna, Johannes ; Cheung, Mike W.-L ; Jak, Suzanne</creatorcontrib><description>Longitudinal panels include several thousand participants and variables. Traditionally, psychologists analyze only a few variables - partly because common unregularized linear models perform poorly when the number of variables (p) approaches the number of observations (N). Predictive modeling methods can be used when N p situations arise in psychological research. We illustrate these techniques on exemplary variables from the German GESIS Panel, while describing the choice of preprocessing, model classes, resampling techniques, hyperparameter tuning, and performance measures. In analyses with about 2,000 subjects and variables each, we predict panelists' gender, sick days, an evaluation of US President Trump, income, life satisfaction, and sleep satisfaction. Elastic net and random forest models were compared to dummy predictions in benchmark experiments. While good performance was achieved, the linear elastic net performed similar to the nonlinear random forest. Elastic nets were refitted to extract the ten most important predictors. Their interpretation validates our approach, and further modeling options are discussed. Code can be found at https://osf.io/zpse3/</description><identifier>ISSN: 2190-8370</identifier><identifier>EISSN: 2151-2604</identifier><identifier>DOI: 10.1027/2151-2604/a000343</identifier><language>eng</language><publisher>Hogrefe Publishing</publisher><subject>Decision Tree Algorithms ; Female ; Human ; Income Level ; Life Satisfaction ; Machine Learning ; Male ; Predictability (Measurement) ; Prediction ; Psychologists ; Simulation ; Sleep ; Test Construction</subject><ispartof>Zeitschrift für Psychologie, 2018, Vol.226 (4), p.246-258</ispartof><rights>2018 Hogrefe Publishing</rights><rights>2018, Hogrefe Publishing</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a353t-58b6005a53f6888bdcfb66a9e00b7a32aef20b9bc4168709bb4780724b362ed73</citedby><cites>FETCH-LOGICAL-a353t-58b6005a53f6888bdcfb66a9e00b7a32aef20b9bc4168709bb4780724b362ed73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,4026,27930,27931,27932</link.rule.ids></links><search><contributor>Cheung, Mike W.-L</contributor><contributor>Jak, Suzanne</contributor><creatorcontrib>Pargent, Florian</creatorcontrib><creatorcontrib>Albert-von der Gönna, Johannes</creatorcontrib><title>Predictive Modeling With Psychological Panel Data</title><title>Zeitschrift für Psychologie</title><description>Longitudinal panels include several thousand participants and variables. Traditionally, psychologists analyze only a few variables - partly because common unregularized linear models perform poorly when the number of variables (p) approaches the number of observations (N). Predictive modeling methods can be used when N p situations arise in psychological research. We illustrate these techniques on exemplary variables from the German GESIS Panel, while describing the choice of preprocessing, model classes, resampling techniques, hyperparameter tuning, and performance measures. In analyses with about 2,000 subjects and variables each, we predict panelists' gender, sick days, an evaluation of US President Trump, income, life satisfaction, and sleep satisfaction. Elastic net and random forest models were compared to dummy predictions in benchmark experiments. While good performance was achieved, the linear elastic net performed similar to the nonlinear random forest. Elastic nets were refitted to extract the ten most important predictors. Their interpretation validates our approach, and further modeling options are discussed. Code can be found at https://osf.io/zpse3/</description><subject>Decision Tree Algorithms</subject><subject>Female</subject><subject>Human</subject><subject>Income Level</subject><subject>Life Satisfaction</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Predictability (Measurement)</subject><subject>Prediction</subject><subject>Psychologists</subject><subject>Simulation</subject><subject>Sleep</subject><subject>Test Construction</subject><issn>2190-8370</issn><issn>2151-2604</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFZ_gLeAV2NnP7LZHKVaFSr2oHhcZjebNiUmcXcr1F9vQounGYb3g3kIuaZwR4HlM0YzmjIJYoYAwAU_IZP_2-m4F5AqnsM5uQhhCyAZk3xC6Mq7srax_nHJa1e6pm7XyWcdN8kq7O2ma7p1bbFJVti6JnnAiJfkrMImuKvjnJKPxeP7_Dldvj29zO-XKfKMxzRTRgJkmPFKKqVMaSsjJRYOwOTIGbqKgSmMFVSqHApjRK4gZ8JwyVyZ8ym5OeT2vvveuRD1ttv5dqjUjCrFMkGBDip6UFnfheBdpXtff6Hfawp6JKNHCnqkoI9kBs_twYM96n54E32sbeOC3Xnv2qh_q14PeLTQTEj-B1sbY_E</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Pargent, Florian</creator><creator>Albert-von der Gönna, Johannes</creator><general>Hogrefe Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7RZ</scope><scope>PSYQQ</scope></search><sort><creationdate>2018</creationdate><title>Predictive Modeling With Psychological Panel Data</title><author>Pargent, Florian ; Albert-von der Gönna, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a353t-58b6005a53f6888bdcfb66a9e00b7a32aef20b9bc4168709bb4780724b362ed73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Decision Tree Algorithms</topic><topic>Female</topic><topic>Human</topic><topic>Income Level</topic><topic>Life Satisfaction</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Predictability (Measurement)</topic><topic>Prediction</topic><topic>Psychologists</topic><topic>Simulation</topic><topic>Sleep</topic><topic>Test Construction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pargent, Florian</creatorcontrib><creatorcontrib>Albert-von der Gönna, Johannes</creatorcontrib><collection>CrossRef</collection><collection>Access via APA PsycArticles® (ProQuest)</collection><collection>ProQuest One Psychology</collection><jtitle>Zeitschrift für Psychologie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pargent, Florian</au><au>Albert-von der Gönna, Johannes</au><au>Cheung, Mike W.-L</au><au>Jak, Suzanne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive Modeling With Psychological Panel Data</atitle><jtitle>Zeitschrift für Psychologie</jtitle><date>2018</date><risdate>2018</risdate><volume>226</volume><issue>4</issue><spage>246</spage><epage>258</epage><pages>246-258</pages><issn>2190-8370</issn><eissn>2151-2604</eissn><abstract>Longitudinal panels include several thousand participants and variables. Traditionally, psychologists analyze only a few variables - partly because common unregularized linear models perform poorly when the number of variables (p) approaches the number of observations (N). Predictive modeling methods can be used when N p situations arise in psychological research. We illustrate these techniques on exemplary variables from the German GESIS Panel, while describing the choice of preprocessing, model classes, resampling techniques, hyperparameter tuning, and performance measures. In analyses with about 2,000 subjects and variables each, we predict panelists' gender, sick days, an evaluation of US President Trump, income, life satisfaction, and sleep satisfaction. Elastic net and random forest models were compared to dummy predictions in benchmark experiments. While good performance was achieved, the linear elastic net performed similar to the nonlinear random forest. Elastic nets were refitted to extract the ten most important predictors. Their interpretation validates our approach, and further modeling options are discussed. Code can be found at https://osf.io/zpse3/</abstract><pub>Hogrefe Publishing</pub><doi>10.1027/2151-2604/a000343</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-8370 |
ispartof | Zeitschrift für Psychologie, 2018, Vol.226 (4), p.246-258 |
issn | 2190-8370 2151-2604 |
language | eng |
recordid | cdi_proquest_journals_2188254101 |
source | APA PsycARTICLES; PsyJOURNALS |
subjects | Decision Tree Algorithms Female Human Income Level Life Satisfaction Machine Learning Male Predictability (Measurement) Prediction Psychologists Simulation Sleep Test Construction |
title | Predictive Modeling With Psychological Panel Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T00%3A30%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20Modeling%20With%20Psychological%20Panel%20Data&rft.jtitle=Zeitschrift%20f%C3%BCr%20Psychologie&rft.au=Pargent,%20Florian&rft.date=2018&rft.volume=226&rft.issue=4&rft.spage=246&rft.epage=258&rft.pages=246-258&rft.issn=2190-8370&rft.eissn=2151-2604&rft_id=info:doi/10.1027/2151-2604/a000343&rft_dat=%3Cproquest_cross%3E2188254101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2188254101&rft_id=info:pmid/&rfr_iscdi=true |