Predictive Modeling With Psychological Panel Data

Longitudinal panels include several thousand participants and variables. Traditionally, psychologists analyze only a few variables - partly because common unregularized linear models perform poorly when the number of variables (p) approaches the number of observations (N). Predictive modeling method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für Psychologie 2018, Vol.226 (4), p.246-258
Hauptverfasser: Pargent, Florian, Albert-von der Gönna, Johannes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 258
container_issue 4
container_start_page 246
container_title Zeitschrift für Psychologie
container_volume 226
creator Pargent, Florian
Albert-von der Gönna, Johannes
description Longitudinal panels include several thousand participants and variables. Traditionally, psychologists analyze only a few variables - partly because common unregularized linear models perform poorly when the number of variables (p) approaches the number of observations (N). Predictive modeling methods can be used when N  p situations arise in psychological research. We illustrate these techniques on exemplary variables from the German GESIS Panel, while describing the choice of preprocessing, model classes, resampling techniques, hyperparameter tuning, and performance measures. In analyses with about 2,000 subjects and variables each, we predict panelists' gender, sick days, an evaluation of US President Trump, income, life satisfaction, and sleep satisfaction. Elastic net and random forest models were compared to dummy predictions in benchmark experiments. While good performance was achieved, the linear elastic net performed similar to the nonlinear random forest. Elastic nets were refitted to extract the ten most important predictors. Their interpretation validates our approach, and further modeling options are discussed. Code can be found at https://osf.io/zpse3/
doi_str_mv 10.1027/2151-2604/a000343
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2188254101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2188254101</sourcerecordid><originalsourceid>FETCH-LOGICAL-a353t-58b6005a53f6888bdcfb66a9e00b7a32aef20b9bc4168709bb4780724b362ed73</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gLeAV2NnP7LZHKVaFSr2oHhcZjebNiUmcXcr1F9vQounGYb3g3kIuaZwR4HlM0YzmjIJYoYAwAU_IZP_2-m4F5AqnsM5uQhhCyAZk3xC6Mq7srax_nHJa1e6pm7XyWcdN8kq7O2ma7p1bbFJVti6JnnAiJfkrMImuKvjnJKPxeP7_Dldvj29zO-XKfKMxzRTRgJkmPFKKqVMaSsjJRYOwOTIGbqKgSmMFVSqHApjRK4gZ8JwyVyZ8ym5OeT2vvveuRD1ttv5dqjUjCrFMkGBDip6UFnfheBdpXtff6Hfawp6JKNHCnqkoI9kBs_twYM96n54E32sbeOC3Xnv2qh_q14PeLTQTEj-B1sbY_E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2188254101</pqid></control><display><type>article</type><title>Predictive Modeling With Psychological Panel Data</title><source>APA PsycARTICLES</source><source>PsyJOURNALS</source><creator>Pargent, Florian ; Albert-von der Gönna, Johannes</creator><contributor>Cheung, Mike W.-L ; Jak, Suzanne</contributor><creatorcontrib>Pargent, Florian ; Albert-von der Gönna, Johannes ; Cheung, Mike W.-L ; Jak, Suzanne</creatorcontrib><description>Longitudinal panels include several thousand participants and variables. Traditionally, psychologists analyze only a few variables - partly because common unregularized linear models perform poorly when the number of variables (p) approaches the number of observations (N). Predictive modeling methods can be used when N  p situations arise in psychological research. We illustrate these techniques on exemplary variables from the German GESIS Panel, while describing the choice of preprocessing, model classes, resampling techniques, hyperparameter tuning, and performance measures. In analyses with about 2,000 subjects and variables each, we predict panelists' gender, sick days, an evaluation of US President Trump, income, life satisfaction, and sleep satisfaction. Elastic net and random forest models were compared to dummy predictions in benchmark experiments. While good performance was achieved, the linear elastic net performed similar to the nonlinear random forest. Elastic nets were refitted to extract the ten most important predictors. Their interpretation validates our approach, and further modeling options are discussed. Code can be found at https://osf.io/zpse3/</description><identifier>ISSN: 2190-8370</identifier><identifier>EISSN: 2151-2604</identifier><identifier>DOI: 10.1027/2151-2604/a000343</identifier><language>eng</language><publisher>Hogrefe Publishing</publisher><subject>Decision Tree Algorithms ; Female ; Human ; Income Level ; Life Satisfaction ; Machine Learning ; Male ; Predictability (Measurement) ; Prediction ; Psychologists ; Simulation ; Sleep ; Test Construction</subject><ispartof>Zeitschrift für Psychologie, 2018, Vol.226 (4), p.246-258</ispartof><rights>2018 Hogrefe Publishing</rights><rights>2018, Hogrefe Publishing</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a353t-58b6005a53f6888bdcfb66a9e00b7a32aef20b9bc4168709bb4780724b362ed73</citedby><cites>FETCH-LOGICAL-a353t-58b6005a53f6888bdcfb66a9e00b7a32aef20b9bc4168709bb4780724b362ed73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,4026,27930,27931,27932</link.rule.ids></links><search><contributor>Cheung, Mike W.-L</contributor><contributor>Jak, Suzanne</contributor><creatorcontrib>Pargent, Florian</creatorcontrib><creatorcontrib>Albert-von der Gönna, Johannes</creatorcontrib><title>Predictive Modeling With Psychological Panel Data</title><title>Zeitschrift für Psychologie</title><description>Longitudinal panels include several thousand participants and variables. Traditionally, psychologists analyze only a few variables - partly because common unregularized linear models perform poorly when the number of variables (p) approaches the number of observations (N). Predictive modeling methods can be used when N  p situations arise in psychological research. We illustrate these techniques on exemplary variables from the German GESIS Panel, while describing the choice of preprocessing, model classes, resampling techniques, hyperparameter tuning, and performance measures. In analyses with about 2,000 subjects and variables each, we predict panelists' gender, sick days, an evaluation of US President Trump, income, life satisfaction, and sleep satisfaction. Elastic net and random forest models were compared to dummy predictions in benchmark experiments. While good performance was achieved, the linear elastic net performed similar to the nonlinear random forest. Elastic nets were refitted to extract the ten most important predictors. Their interpretation validates our approach, and further modeling options are discussed. Code can be found at https://osf.io/zpse3/</description><subject>Decision Tree Algorithms</subject><subject>Female</subject><subject>Human</subject><subject>Income Level</subject><subject>Life Satisfaction</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Predictability (Measurement)</subject><subject>Prediction</subject><subject>Psychologists</subject><subject>Simulation</subject><subject>Sleep</subject><subject>Test Construction</subject><issn>2190-8370</issn><issn>2151-2604</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFZ_gLeAV2NnP7LZHKVaFSr2oHhcZjebNiUmcXcr1F9vQounGYb3g3kIuaZwR4HlM0YzmjIJYoYAwAU_IZP_2-m4F5AqnsM5uQhhCyAZk3xC6Mq7srax_nHJa1e6pm7XyWcdN8kq7O2ma7p1bbFJVti6JnnAiJfkrMImuKvjnJKPxeP7_Dldvj29zO-XKfKMxzRTRgJkmPFKKqVMaSsjJRYOwOTIGbqKgSmMFVSqHApjRK4gZ8JwyVyZ8ym5OeT2vvveuRD1ttv5dqjUjCrFMkGBDip6UFnfheBdpXtff6Hfawp6JKNHCnqkoI9kBs_twYM96n54E32sbeOC3Xnv2qh_q14PeLTQTEj-B1sbY_E</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Pargent, Florian</creator><creator>Albert-von der Gönna, Johannes</creator><general>Hogrefe Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7RZ</scope><scope>PSYQQ</scope></search><sort><creationdate>2018</creationdate><title>Predictive Modeling With Psychological Panel Data</title><author>Pargent, Florian ; Albert-von der Gönna, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a353t-58b6005a53f6888bdcfb66a9e00b7a32aef20b9bc4168709bb4780724b362ed73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Decision Tree Algorithms</topic><topic>Female</topic><topic>Human</topic><topic>Income Level</topic><topic>Life Satisfaction</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Predictability (Measurement)</topic><topic>Prediction</topic><topic>Psychologists</topic><topic>Simulation</topic><topic>Sleep</topic><topic>Test Construction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pargent, Florian</creatorcontrib><creatorcontrib>Albert-von der Gönna, Johannes</creatorcontrib><collection>CrossRef</collection><collection>Access via APA PsycArticles® (ProQuest)</collection><collection>ProQuest One Psychology</collection><jtitle>Zeitschrift für Psychologie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pargent, Florian</au><au>Albert-von der Gönna, Johannes</au><au>Cheung, Mike W.-L</au><au>Jak, Suzanne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive Modeling With Psychological Panel Data</atitle><jtitle>Zeitschrift für Psychologie</jtitle><date>2018</date><risdate>2018</risdate><volume>226</volume><issue>4</issue><spage>246</spage><epage>258</epage><pages>246-258</pages><issn>2190-8370</issn><eissn>2151-2604</eissn><abstract>Longitudinal panels include several thousand participants and variables. Traditionally, psychologists analyze only a few variables - partly because common unregularized linear models perform poorly when the number of variables (p) approaches the number of observations (N). Predictive modeling methods can be used when N  p situations arise in psychological research. We illustrate these techniques on exemplary variables from the German GESIS Panel, while describing the choice of preprocessing, model classes, resampling techniques, hyperparameter tuning, and performance measures. In analyses with about 2,000 subjects and variables each, we predict panelists' gender, sick days, an evaluation of US President Trump, income, life satisfaction, and sleep satisfaction. Elastic net and random forest models were compared to dummy predictions in benchmark experiments. While good performance was achieved, the linear elastic net performed similar to the nonlinear random forest. Elastic nets were refitted to extract the ten most important predictors. Their interpretation validates our approach, and further modeling options are discussed. Code can be found at https://osf.io/zpse3/</abstract><pub>Hogrefe Publishing</pub><doi>10.1027/2151-2604/a000343</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2190-8370
ispartof Zeitschrift für Psychologie, 2018, Vol.226 (4), p.246-258
issn 2190-8370
2151-2604
language eng
recordid cdi_proquest_journals_2188254101
source APA PsycARTICLES; PsyJOURNALS
subjects Decision Tree Algorithms
Female
Human
Income Level
Life Satisfaction
Machine Learning
Male
Predictability (Measurement)
Prediction
Psychologists
Simulation
Sleep
Test Construction
title Predictive Modeling With Psychological Panel Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T00%3A30%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20Modeling%20With%20Psychological%20Panel%20Data&rft.jtitle=Zeitschrift%20f%C3%BCr%20Psychologie&rft.au=Pargent,%20Florian&rft.date=2018&rft.volume=226&rft.issue=4&rft.spage=246&rft.epage=258&rft.pages=246-258&rft.issn=2190-8370&rft.eissn=2151-2604&rft_id=info:doi/10.1027/2151-2604/a000343&rft_dat=%3Cproquest_cross%3E2188254101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2188254101&rft_id=info:pmid/&rfr_iscdi=true