On Distribution of Elements of Subgroups in Arithmetic Progressions Modulo a Prime
Let F p be the field of residue classes modulo a large prime number p . We prove that if G is a subgroup of the multiplicative group F p * and if I ⊂ F p is an arithmetic progression, then | G ∩ I | = ( 1 + o ( 1 ) ) | G | I | / p + R , where | R | < ( | I | 1 / 2 + | G | 1 / 2 + | I | 1 / 2 | G...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Steklov Institute of Mathematics 2018-11, Vol.303 (1), p.50-57 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
F
p
be the field of residue classes modulo a large prime number
p
. We prove that if
G
is a subgroup of the multiplicative group
F
p
*
and if
I
⊂
F
p
is an arithmetic progression, then
|
G
∩
I
|
=
(
1
+
o
(
1
)
)
|
G
|
I
|
/
p
+
R
, where
|
R
|
<
(
|
I
|
1
/
2
+
|
G
|
1
/
2
+
|
I
|
1
/
2
|
G
|
3
/
8
p
−
1
/
8
)
p
o
(
1
)
. We use this bound to show that the number of solutions to the congruence
x
n
≡ λ (mod
p
),
x
∈
ℕ
,
L
<
x
<
L
+
p/n
, is at most
p
1/3−1/390+
o
(1)
uniformly over positive integers
n
, λ and
L
. The proofs are based on results and arguments of Cilleruelo and the author (2014), Murphy, Rudnev, Shkredov and Shteinikov (2017) and Bourgain, Konyagin, Shparlinski and the author (2013). |
---|---|
ISSN: | 0081-5438 1531-8605 |
DOI: | 10.1134/S0081543818080060 |