Relevant feature selection and ensemble classifier design using bi-objective genetic algorithm
In the era of digital boom, single classifier cannot perform well in various datasets. Ensemble classifier aims to bridge this performance gap by combining multiple classifiers of diverse characteristics to get better generalization. But classifier selection highly depends on the dataset, and its ef...
Gespeichert in:
Veröffentlicht in: | Knowledge and information systems 2020-02, Vol.62 (2), p.423-455 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 455 |
---|---|
container_issue | 2 |
container_start_page | 423 |
container_title | Knowledge and information systems |
container_volume | 62 |
creator | Das, Asit Kumar Pati, Soumen Kumar Ghosh, Arka |
description | In the era of digital boom, single classifier cannot perform well in various datasets. Ensemble classifier aims to bridge this performance gap by combining multiple classifiers of diverse characteristics to get better generalization. But classifier selection highly depends on the dataset, and its efficiency degrades tremendously due to the presence of irrelevant features. Feature selection aids the performance of classifier by removing those irrelevant features. Initially, we have proposed a bi-objective genetic algorithm-based feature selection method (FSBOGA), where nonlinear, uniform, hybrid cellular automata are used to generate an initial population. Objective functions are defined using lower bound approximation of rough set theory and Kullback–Leibler divergence method of information theory to select unambiguous and informative features. The replacement strategy for creation of next-generation population is based on the Pareto optimal solution with respect to both the objective functions. Next, a novel bi-objective genetic algorithm-based ensemble classification method (CCBOGA) is devised to ensemble the individual classifiers designed using obtained reduced datasets. It is observed that the constructed ensemble classifier performs better than the individual classifiers. The performances of proposed FSBOGA and CCBOGA are investigated on some popular datasets and compared with the
state
-
of
-
the
-
art
algorithms to demonstrate their effectiveness. |
doi_str_mv | 10.1007/s10115-019-01341-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2188083785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2188083785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a88786b0ed54ef3d8c19e6d784b5dd27f61fe1af4bdc8d5243d6a6df4f0a5eb73</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19Xcpk0ySxl8gSCIbg1pc1MzdNIxaQf892acAXcuLvfBOefCR8glsGtgTN4kYAB1wWCRi1dQiCMyY2VeOYA4PszApTwlZymtGAMpAGbk4xV73JowUodmnCLSlA_t6IdATbAUQ8J10yNte5OSdx4jtZh8F-iUfOho44uhWe0cW6QdBhx9S03fDdGPn-tzcuJMn_Di0Ofk_f7ubflYPL88PC1vn4uWw2IsjFJSiYahrSt03KoWFiisVFVTW1tKJ8AhGFc1tlW2LituhRHWVY6ZGhvJ5-Rqn7uJw9eEadSrYYohv9QlKMUUl6rOqnKvauOQUkSnN9GvTfzWwPSOo95z1Jmj_uWoRTbxvSllcegw_kX_4_oBBKV32Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2188083785</pqid></control><display><type>article</type><title>Relevant feature selection and ensemble classifier design using bi-objective genetic algorithm</title><source>Springer Nature - Complete Springer Journals</source><creator>Das, Asit Kumar ; Pati, Soumen Kumar ; Ghosh, Arka</creator><creatorcontrib>Das, Asit Kumar ; Pati, Soumen Kumar ; Ghosh, Arka</creatorcontrib><description>In the era of digital boom, single classifier cannot perform well in various datasets. Ensemble classifier aims to bridge this performance gap by combining multiple classifiers of diverse characteristics to get better generalization. But classifier selection highly depends on the dataset, and its efficiency degrades tremendously due to the presence of irrelevant features. Feature selection aids the performance of classifier by removing those irrelevant features. Initially, we have proposed a bi-objective genetic algorithm-based feature selection method (FSBOGA), where nonlinear, uniform, hybrid cellular automata are used to generate an initial population. Objective functions are defined using lower bound approximation of rough set theory and Kullback–Leibler divergence method of information theory to select unambiguous and informative features. The replacement strategy for creation of next-generation population is based on the Pareto optimal solution with respect to both the objective functions. Next, a novel bi-objective genetic algorithm-based ensemble classification method (CCBOGA) is devised to ensemble the individual classifiers designed using obtained reduced datasets. It is observed that the constructed ensemble classifier performs better than the individual classifiers. The performances of proposed FSBOGA and CCBOGA are investigated on some popular datasets and compared with the
state
-
of
-
the
-
art
algorithms to demonstrate their effectiveness.</description><identifier>ISSN: 0219-1377</identifier><identifier>EISSN: 0219-3116</identifier><identifier>DOI: 10.1007/s10115-019-01341-6</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Cellular automata ; Classifiers ; Computer Science ; Data Mining and Knowledge Discovery ; Database Management ; Datasets ; Divergence ; Feature selection ; Genetic algorithms ; Information Storage and Retrieval ; Information Systems and Communication Service ; Information Systems Applications (incl.Internet) ; Information theory ; IT in Business ; Lower bounds ; Pareto optimum ; Regular Paper ; Set theory</subject><ispartof>Knowledge and information systems, 2020-02, Vol.62 (2), p.423-455</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>Knowledge and Information Systems is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a88786b0ed54ef3d8c19e6d784b5dd27f61fe1af4bdc8d5243d6a6df4f0a5eb73</citedby><cites>FETCH-LOGICAL-c319t-a88786b0ed54ef3d8c19e6d784b5dd27f61fe1af4bdc8d5243d6a6df4f0a5eb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10115-019-01341-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10115-019-01341-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Das, Asit Kumar</creatorcontrib><creatorcontrib>Pati, Soumen Kumar</creatorcontrib><creatorcontrib>Ghosh, Arka</creatorcontrib><title>Relevant feature selection and ensemble classifier design using bi-objective genetic algorithm</title><title>Knowledge and information systems</title><addtitle>Knowl Inf Syst</addtitle><description>In the era of digital boom, single classifier cannot perform well in various datasets. Ensemble classifier aims to bridge this performance gap by combining multiple classifiers of diverse characteristics to get better generalization. But classifier selection highly depends on the dataset, and its efficiency degrades tremendously due to the presence of irrelevant features. Feature selection aids the performance of classifier by removing those irrelevant features. Initially, we have proposed a bi-objective genetic algorithm-based feature selection method (FSBOGA), where nonlinear, uniform, hybrid cellular automata are used to generate an initial population. Objective functions are defined using lower bound approximation of rough set theory and Kullback–Leibler divergence method of information theory to select unambiguous and informative features. The replacement strategy for creation of next-generation population is based on the Pareto optimal solution with respect to both the objective functions. Next, a novel bi-objective genetic algorithm-based ensemble classification method (CCBOGA) is devised to ensemble the individual classifiers designed using obtained reduced datasets. It is observed that the constructed ensemble classifier performs better than the individual classifiers. The performances of proposed FSBOGA and CCBOGA are investigated on some popular datasets and compared with the
state
-
of
-
the
-
art
algorithms to demonstrate their effectiveness.</description><subject>Cellular automata</subject><subject>Classifiers</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Datasets</subject><subject>Divergence</subject><subject>Feature selection</subject><subject>Genetic algorithms</subject><subject>Information Storage and Retrieval</subject><subject>Information Systems and Communication Service</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Information theory</subject><subject>IT in Business</subject><subject>Lower bounds</subject><subject>Pareto optimum</subject><subject>Regular Paper</subject><subject>Set theory</subject><issn>0219-1377</issn><issn>0219-3116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19Xcpk0ySxl8gSCIbg1pc1MzdNIxaQf892acAXcuLvfBOefCR8glsGtgTN4kYAB1wWCRi1dQiCMyY2VeOYA4PszApTwlZymtGAMpAGbk4xV73JowUodmnCLSlA_t6IdATbAUQ8J10yNte5OSdx4jtZh8F-iUfOho44uhWe0cW6QdBhx9S03fDdGPn-tzcuJMn_Di0Ofk_f7ubflYPL88PC1vn4uWw2IsjFJSiYahrSt03KoWFiisVFVTW1tKJ8AhGFc1tlW2LituhRHWVY6ZGhvJ5-Rqn7uJw9eEadSrYYohv9QlKMUUl6rOqnKvauOQUkSnN9GvTfzWwPSOo95z1Jmj_uWoRTbxvSllcegw_kX_4_oBBKV32Q</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Das, Asit Kumar</creator><creator>Pati, Soumen Kumar</creator><creator>Ghosh, Arka</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20200201</creationdate><title>Relevant feature selection and ensemble classifier design using bi-objective genetic algorithm</title><author>Das, Asit Kumar ; Pati, Soumen Kumar ; Ghosh, Arka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a88786b0ed54ef3d8c19e6d784b5dd27f61fe1af4bdc8d5243d6a6df4f0a5eb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cellular automata</topic><topic>Classifiers</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Datasets</topic><topic>Divergence</topic><topic>Feature selection</topic><topic>Genetic algorithms</topic><topic>Information Storage and Retrieval</topic><topic>Information Systems and Communication Service</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Information theory</topic><topic>IT in Business</topic><topic>Lower bounds</topic><topic>Pareto optimum</topic><topic>Regular Paper</topic><topic>Set theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Asit Kumar</creatorcontrib><creatorcontrib>Pati, Soumen Kumar</creatorcontrib><creatorcontrib>Ghosh, Arka</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Knowledge and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Asit Kumar</au><au>Pati, Soumen Kumar</au><au>Ghosh, Arka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relevant feature selection and ensemble classifier design using bi-objective genetic algorithm</atitle><jtitle>Knowledge and information systems</jtitle><stitle>Knowl Inf Syst</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>62</volume><issue>2</issue><spage>423</spage><epage>455</epage><pages>423-455</pages><issn>0219-1377</issn><eissn>0219-3116</eissn><abstract>In the era of digital boom, single classifier cannot perform well in various datasets. Ensemble classifier aims to bridge this performance gap by combining multiple classifiers of diverse characteristics to get better generalization. But classifier selection highly depends on the dataset, and its efficiency degrades tremendously due to the presence of irrelevant features. Feature selection aids the performance of classifier by removing those irrelevant features. Initially, we have proposed a bi-objective genetic algorithm-based feature selection method (FSBOGA), where nonlinear, uniform, hybrid cellular automata are used to generate an initial population. Objective functions are defined using lower bound approximation of rough set theory and Kullback–Leibler divergence method of information theory to select unambiguous and informative features. The replacement strategy for creation of next-generation population is based on the Pareto optimal solution with respect to both the objective functions. Next, a novel bi-objective genetic algorithm-based ensemble classification method (CCBOGA) is devised to ensemble the individual classifiers designed using obtained reduced datasets. It is observed that the constructed ensemble classifier performs better than the individual classifiers. The performances of proposed FSBOGA and CCBOGA are investigated on some popular datasets and compared with the
state
-
of
-
the
-
art
algorithms to demonstrate their effectiveness.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10115-019-01341-6</doi><tpages>33</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0219-1377 |
ispartof | Knowledge and information systems, 2020-02, Vol.62 (2), p.423-455 |
issn | 0219-1377 0219-3116 |
language | eng |
recordid | cdi_proquest_journals_2188083785 |
source | Springer Nature - Complete Springer Journals |
subjects | Cellular automata Classifiers Computer Science Data Mining and Knowledge Discovery Database Management Datasets Divergence Feature selection Genetic algorithms Information Storage and Retrieval Information Systems and Communication Service Information Systems Applications (incl.Internet) Information theory IT in Business Lower bounds Pareto optimum Regular Paper Set theory |
title | Relevant feature selection and ensemble classifier design using bi-objective genetic algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A48%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relevant%20feature%20selection%20and%20ensemble%20classifier%20design%20using%20bi-objective%20genetic%20algorithm&rft.jtitle=Knowledge%20and%20information%20systems&rft.au=Das,%20Asit%20Kumar&rft.date=2020-02-01&rft.volume=62&rft.issue=2&rft.spage=423&rft.epage=455&rft.pages=423-455&rft.issn=0219-1377&rft.eissn=0219-3116&rft_id=info:doi/10.1007/s10115-019-01341-6&rft_dat=%3Cproquest_cross%3E2188083785%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2188083785&rft_id=info:pmid/&rfr_iscdi=true |