Magnetic-field-induced incommensurate to collinear spin order transition in NiBr2

The triangular spin lattice of NiBr2 is a canonical example of the frustrated helimagnet that shows a collinear commensurate antiferromagnetic to an incommensurate spin helix phase transition on cooling. Herein, we have studied a self-flux grown NiBr2 single crystal by neutron diffraction and low te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2019-03, Vol.125 (9)
Hauptverfasser: Babu, S., Prokeš, K., Huang, Y. K., Radu, F., Mishra, S. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Journal of applied physics
container_volume 125
creator Babu, S.
Prokeš, K.
Huang, Y. K.
Radu, F.
Mishra, S. K.
description The triangular spin lattice of NiBr2 is a canonical example of the frustrated helimagnet that shows a collinear commensurate antiferromagnetic to an incommensurate spin helix phase transition on cooling. Herein, we have studied a self-flux grown NiBr2 single crystal by neutron diffraction and low temperature magnetization measurements at fields up to 14 T. Experimental findings enable the deduction of the driving force responsible for the spin spiral ordering. The neutron diffraction data reveal satellite peaks representing characteristic features of an incommensurate magnetic state. The satellites develop symmetrically below TN=44.0(1)K, replacing the main magnetic reflections. Interestingly, a field-induced incommensurate to commensurate spin phase transition has been successfully demonstrated, which enforces the spin helix to restore the high temperature compensated antiferromagnetic structure. This reorientation can be described by a spin-flop in the (a–b) basal plane of a triangular spin lattice system. The findings offer a novel way for spin helix control of incommensurate phases, having immense scientific and technological implications in the next-generation data storage devices.
doi_str_mv 10.1063/1.5066625
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2188060545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2188060545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-9d9d69741ab9adf360a59a28beb3cfe4aa4793b4eb8eda1214bea95579a70c5e3</originalsourceid><addsrcrecordid>eNotkE1LAzEURYMoWKsL_8GAKxep-ZjMTJZarApVEXQd3iRvJGWa1CSz8N9baVd3c-69cAi55mzBWSPv-EKxpmmEOiEzzjpNW6XYKZkxJjjtdKvPyUXOG8Y476SekY9X-A5YvKWDx9FRH9xk0VU-2LjdYshTgoJViZWN4-gDQqryzocqJoepKglC9sXHsG9Ub_4hiUtyNsCY8eqYc_K1evxcPtP1-9PL8n5NrVCyUO20a3Rbc-g1uEE2DJQG0fXYSztgDVC3WvY19h064ILXPYJWqtXQMqtQzsnNYXeX4s-EuZhNnFLYXxrBu441TNVqT90eKJtizgkHs0t-C-nXcGb-jRlujsbkH-_AXiE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2188060545</pqid></control><display><type>article</type><title>Magnetic-field-induced incommensurate to collinear spin order transition in NiBr2</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Babu, S. ; Prokeš, K. ; Huang, Y. K. ; Radu, F. ; Mishra, S. K.</creator><creatorcontrib>Babu, S. ; Prokeš, K. ; Huang, Y. K. ; Radu, F. ; Mishra, S. K.</creatorcontrib><description>The triangular spin lattice of NiBr2 is a canonical example of the frustrated helimagnet that shows a collinear commensurate antiferromagnetic to an incommensurate spin helix phase transition on cooling. Herein, we have studied a self-flux grown NiBr2 single crystal by neutron diffraction and low temperature magnetization measurements at fields up to 14 T. Experimental findings enable the deduction of the driving force responsible for the spin spiral ordering. The neutron diffraction data reveal satellite peaks representing characteristic features of an incommensurate magnetic state. The satellites develop symmetrically below TN=44.0(1)K, replacing the main magnetic reflections. Interestingly, a field-induced incommensurate to commensurate spin phase transition has been successfully demonstrated, which enforces the spin helix to restore the high temperature compensated antiferromagnetic structure. This reorientation can be described by a spin-flop in the (a–b) basal plane of a triangular spin lattice system. The findings offer a novel way for spin helix control of incommensurate phases, having immense scientific and technological implications in the next-generation data storage devices.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.5066625</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Antiferromagnetism ; Applied physics ; Basal plane ; Crystal growth ; Crystals ; Data storage ; Deduction ; Electronic devices ; High temperature ; Neutron diffraction ; Neutron flux ; Neutrons ; Phase transitions ; Single crystals</subject><ispartof>Journal of applied physics, 2019-03, Vol.125 (9)</ispartof><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c253t-9d9d69741ab9adf360a59a28beb3cfe4aa4793b4eb8eda1214bea95579a70c5e3</citedby><cites>FETCH-LOGICAL-c253t-9d9d69741ab9adf360a59a28beb3cfe4aa4793b4eb8eda1214bea95579a70c5e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Babu, S.</creatorcontrib><creatorcontrib>Prokeš, K.</creatorcontrib><creatorcontrib>Huang, Y. K.</creatorcontrib><creatorcontrib>Radu, F.</creatorcontrib><creatorcontrib>Mishra, S. K.</creatorcontrib><title>Magnetic-field-induced incommensurate to collinear spin order transition in NiBr2</title><title>Journal of applied physics</title><description>The triangular spin lattice of NiBr2 is a canonical example of the frustrated helimagnet that shows a collinear commensurate antiferromagnetic to an incommensurate spin helix phase transition on cooling. Herein, we have studied a self-flux grown NiBr2 single crystal by neutron diffraction and low temperature magnetization measurements at fields up to 14 T. Experimental findings enable the deduction of the driving force responsible for the spin spiral ordering. The neutron diffraction data reveal satellite peaks representing characteristic features of an incommensurate magnetic state. The satellites develop symmetrically below TN=44.0(1)K, replacing the main magnetic reflections. Interestingly, a field-induced incommensurate to commensurate spin phase transition has been successfully demonstrated, which enforces the spin helix to restore the high temperature compensated antiferromagnetic structure. This reorientation can be described by a spin-flop in the (a–b) basal plane of a triangular spin lattice system. The findings offer a novel way for spin helix control of incommensurate phases, having immense scientific and technological implications in the next-generation data storage devices.</description><subject>Antiferromagnetism</subject><subject>Applied physics</subject><subject>Basal plane</subject><subject>Crystal growth</subject><subject>Crystals</subject><subject>Data storage</subject><subject>Deduction</subject><subject>Electronic devices</subject><subject>High temperature</subject><subject>Neutron diffraction</subject><subject>Neutron flux</subject><subject>Neutrons</subject><subject>Phase transitions</subject><subject>Single crystals</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEURYMoWKsL_8GAKxep-ZjMTJZarApVEXQd3iRvJGWa1CSz8N9baVd3c-69cAi55mzBWSPv-EKxpmmEOiEzzjpNW6XYKZkxJjjtdKvPyUXOG8Y476SekY9X-A5YvKWDx9FRH9xk0VU-2LjdYshTgoJViZWN4-gDQqryzocqJoepKglC9sXHsG9Ub_4hiUtyNsCY8eqYc_K1evxcPtP1-9PL8n5NrVCyUO20a3Rbc-g1uEE2DJQG0fXYSztgDVC3WvY19h064ILXPYJWqtXQMqtQzsnNYXeX4s-EuZhNnFLYXxrBu441TNVqT90eKJtizgkHs0t-C-nXcGb-jRlujsbkH-_AXiE</recordid><startdate>20190307</startdate><enddate>20190307</enddate><creator>Babu, S.</creator><creator>Prokeš, K.</creator><creator>Huang, Y. K.</creator><creator>Radu, F.</creator><creator>Mishra, S. K.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190307</creationdate><title>Magnetic-field-induced incommensurate to collinear spin order transition in NiBr2</title><author>Babu, S. ; Prokeš, K. ; Huang, Y. K. ; Radu, F. ; Mishra, S. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-9d9d69741ab9adf360a59a28beb3cfe4aa4793b4eb8eda1214bea95579a70c5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antiferromagnetism</topic><topic>Applied physics</topic><topic>Basal plane</topic><topic>Crystal growth</topic><topic>Crystals</topic><topic>Data storage</topic><topic>Deduction</topic><topic>Electronic devices</topic><topic>High temperature</topic><topic>Neutron diffraction</topic><topic>Neutron flux</topic><topic>Neutrons</topic><topic>Phase transitions</topic><topic>Single crystals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babu, S.</creatorcontrib><creatorcontrib>Prokeš, K.</creatorcontrib><creatorcontrib>Huang, Y. K.</creatorcontrib><creatorcontrib>Radu, F.</creatorcontrib><creatorcontrib>Mishra, S. K.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babu, S.</au><au>Prokeš, K.</au><au>Huang, Y. K.</au><au>Radu, F.</au><au>Mishra, S. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic-field-induced incommensurate to collinear spin order transition in NiBr2</atitle><jtitle>Journal of applied physics</jtitle><date>2019-03-07</date><risdate>2019</risdate><volume>125</volume><issue>9</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>The triangular spin lattice of NiBr2 is a canonical example of the frustrated helimagnet that shows a collinear commensurate antiferromagnetic to an incommensurate spin helix phase transition on cooling. Herein, we have studied a self-flux grown NiBr2 single crystal by neutron diffraction and low temperature magnetization measurements at fields up to 14 T. Experimental findings enable the deduction of the driving force responsible for the spin spiral ordering. The neutron diffraction data reveal satellite peaks representing characteristic features of an incommensurate magnetic state. The satellites develop symmetrically below TN=44.0(1)K, replacing the main magnetic reflections. Interestingly, a field-induced incommensurate to commensurate spin phase transition has been successfully demonstrated, which enforces the spin helix to restore the high temperature compensated antiferromagnetic structure. This reorientation can be described by a spin-flop in the (a–b) basal plane of a triangular spin lattice system. The findings offer a novel way for spin helix control of incommensurate phases, having immense scientific and technological implications in the next-generation data storage devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5066625</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2019-03, Vol.125 (9)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2188060545
source AIP Journals Complete; Alma/SFX Local Collection
subjects Antiferromagnetism
Applied physics
Basal plane
Crystal growth
Crystals
Data storage
Deduction
Electronic devices
High temperature
Neutron diffraction
Neutron flux
Neutrons
Phase transitions
Single crystals
title Magnetic-field-induced incommensurate to collinear spin order transition in NiBr2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A40%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic-field-induced%20incommensurate%20to%20collinear%20spin%20order%20transition%20in%20NiBr2&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Babu,%20S.&rft.date=2019-03-07&rft.volume=125&rft.issue=9&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.5066625&rft_dat=%3Cproquest_cross%3E2188060545%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2188060545&rft_id=info:pmid/&rfr_iscdi=true