Atomic Sulfur Covalently Engineered Interlayers of Ti3C2 MXene for Ultra‐Fast Sodium‐Ion Storage by Enhanced Pseudocapacitance
2D MXenes have been widely applied in the field of electrochemical energy storage owning to their high electrical conductivity and large redox‐active surface area. However, electrodes made from multilayered MXene with small interlayer spacing exhibit sluggish kinetics with low capacity for sodium‐io...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2019-03, Vol.29 (10), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 29 |
creator | Luo, Jianmin Zheng, Jianhui Nai, Jianwei Jin, Chengbin Yuan, Huadong Sheng, Ouwei Liu, Yujing Fang, Ruyi Zhang, Wenkui Huang, Hui Gan, Yongping Xia, Yang Liang, Chu Zhang, Jun Li, Weiyang Tao, Xinyong |
description | 2D MXenes have been widely applied in the field of electrochemical energy storage owning to their high electrical conductivity and large redox‐active surface area. However, electrodes made from multilayered MXene with small interlayer spacing exhibit sluggish kinetics with low capacity for sodium‐ion storage. Herein, Ti3C2 MXene with expanded and engineered interlayer spacing for excellent storage capability is demonstrated. After cetyltrimethylammonium bromide pretreatment, S atoms are successfully intercalated into the interlayer of Ti3C2 to form a desirable interlayer‐expanded structure via TiS bonding, while pristine Ti3C2 is hardly to be intercalated. When the annealing temperature is 450 °C, the S atoms intercalated Ti3C2 (CT‐S@Ti3C2‐450) electrode delivers the improved Na‐ion capacity of 550 mAh g−1 at 0.1 A g−1 (≈120 mAh g−1 at 15 A g−1, the best MXene‐based Na+‐storage rate performance reported so far), and excellent cycling stability over 5000 cycles at 10 A g−1 by enhanced pseudocapacitance. The enhanced sodium‐ion storage capability has also been verified by theoretical calculations and kinetic analysis. Coupling the CT‐S@Ti3C2‐450 anode with commercial AC cathode, the assembled Na+ capacitor delivers high energy density (263.2 Wh kg−1) under high power density (8240 W kg−1), and outstanding cycling performance.
Sulfur atoms intercalated Ti3C2 MXene, which serves as a high‐performance electrode for sodium‐ion storage. After cetyltrimethylammonium bromide pretreatment, S atoms are successfully intercalated into the interlayer of Ti3C2 to form a desirable interlayer‐expanded structure via TiS bonding. S atoms intercalated Ti3C2 annealed at 450 °C exhibits fast Na‐ion storage kinetics and incremental storage sites after S atoms intercalation. |
doi_str_mv | 10.1002/adfm.201808107 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2187989057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187989057</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2687-1b7650699930a7a365383acec9641ed05c2dd422ce982bd771252ea784907ca43</originalsourceid><addsrcrecordid>eNo9kM1Kw0AURgdRsFa3rgdct85PkplZlthqoUWhLXQXpjM3NSXJ1EmiZCc-gc_ok5igdHXvd_k4Fw5Ct5SMKSHsXtu0GDNCJZGUiDM0oBGNRpwweX7a6fYSXVXVgRAqBA8G6GtSuyIzeNXkaeNx7N51DmWdt3ha7rMSwIPF87IGn-sWfIVditcZjxlebqEEnDqPN3nt9c_n90xXNV45mzVFl-auxKvaeb0HvOtxr7o0HeylgsY6o4_aZHV_ukYXqc4ruPmfQ7SZTdfx02jx_DiPJ4vRnkVSjOhORCGJlFKcaKF5FHLJtQGjooCCJaFh1gaMGVCS7awQlIUMtJCBIsLogA_R3R_36N1bA1WdHFzjy-5lwqgUSioSiq6l_lofWQ5tcvRZoX2bUJL0kpNecnKSnEweZstT4r9NLnT7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187989057</pqid></control><display><type>article</type><title>Atomic Sulfur Covalently Engineered Interlayers of Ti3C2 MXene for Ultra‐Fast Sodium‐Ion Storage by Enhanced Pseudocapacitance</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Luo, Jianmin ; Zheng, Jianhui ; Nai, Jianwei ; Jin, Chengbin ; Yuan, Huadong ; Sheng, Ouwei ; Liu, Yujing ; Fang, Ruyi ; Zhang, Wenkui ; Huang, Hui ; Gan, Yongping ; Xia, Yang ; Liang, Chu ; Zhang, Jun ; Li, Weiyang ; Tao, Xinyong</creator><creatorcontrib>Luo, Jianmin ; Zheng, Jianhui ; Nai, Jianwei ; Jin, Chengbin ; Yuan, Huadong ; Sheng, Ouwei ; Liu, Yujing ; Fang, Ruyi ; Zhang, Wenkui ; Huang, Hui ; Gan, Yongping ; Xia, Yang ; Liang, Chu ; Zhang, Jun ; Li, Weiyang ; Tao, Xinyong</creatorcontrib><description>2D MXenes have been widely applied in the field of electrochemical energy storage owning to their high electrical conductivity and large redox‐active surface area. However, electrodes made from multilayered MXene with small interlayer spacing exhibit sluggish kinetics with low capacity for sodium‐ion storage. Herein, Ti3C2 MXene with expanded and engineered interlayer spacing for excellent storage capability is demonstrated. After cetyltrimethylammonium bromide pretreatment, S atoms are successfully intercalated into the interlayer of Ti3C2 to form a desirable interlayer‐expanded structure via TiS bonding, while pristine Ti3C2 is hardly to be intercalated. When the annealing temperature is 450 °C, the S atoms intercalated Ti3C2 (CT‐S@Ti3C2‐450) electrode delivers the improved Na‐ion capacity of 550 mAh g−1 at 0.1 A g−1 (≈120 mAh g−1 at 15 A g−1, the best MXene‐based Na+‐storage rate performance reported so far), and excellent cycling stability over 5000 cycles at 10 A g−1 by enhanced pseudocapacitance. The enhanced sodium‐ion storage capability has also been verified by theoretical calculations and kinetic analysis. Coupling the CT‐S@Ti3C2‐450 anode with commercial AC cathode, the assembled Na+ capacitor delivers high energy density (263.2 Wh kg−1) under high power density (8240 W kg−1), and outstanding cycling performance.
Sulfur atoms intercalated Ti3C2 MXene, which serves as a high‐performance electrode for sodium‐ion storage. After cetyltrimethylammonium bromide pretreatment, S atoms are successfully intercalated into the interlayer of Ti3C2 to form a desirable interlayer‐expanded structure via TiS bonding. S atoms intercalated Ti3C2 annealed at 450 °C exhibits fast Na‐ion storage kinetics and incremental storage sites after S atoms intercalation.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201808107</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>atomic sulfur covalence ; Cetyltrimethylammonium bromide ; Cycles ; Electrical resistivity ; Electrodes ; Energy storage ; Flux density ; Interlayers ; Ion storage ; Materials science ; MXene ; MXenes ; Pretreatment ; pseudocapacitance ; Sodium ; sodium‐ion storage ; Ti3C2</subject><ispartof>Advanced functional materials, 2019-03, Vol.29 (10), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4084-7743</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201808107$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201808107$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Luo, Jianmin</creatorcontrib><creatorcontrib>Zheng, Jianhui</creatorcontrib><creatorcontrib>Nai, Jianwei</creatorcontrib><creatorcontrib>Jin, Chengbin</creatorcontrib><creatorcontrib>Yuan, Huadong</creatorcontrib><creatorcontrib>Sheng, Ouwei</creatorcontrib><creatorcontrib>Liu, Yujing</creatorcontrib><creatorcontrib>Fang, Ruyi</creatorcontrib><creatorcontrib>Zhang, Wenkui</creatorcontrib><creatorcontrib>Huang, Hui</creatorcontrib><creatorcontrib>Gan, Yongping</creatorcontrib><creatorcontrib>Xia, Yang</creatorcontrib><creatorcontrib>Liang, Chu</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Li, Weiyang</creatorcontrib><creatorcontrib>Tao, Xinyong</creatorcontrib><title>Atomic Sulfur Covalently Engineered Interlayers of Ti3C2 MXene for Ultra‐Fast Sodium‐Ion Storage by Enhanced Pseudocapacitance</title><title>Advanced functional materials</title><description>2D MXenes have been widely applied in the field of electrochemical energy storage owning to their high electrical conductivity and large redox‐active surface area. However, electrodes made from multilayered MXene with small interlayer spacing exhibit sluggish kinetics with low capacity for sodium‐ion storage. Herein, Ti3C2 MXene with expanded and engineered interlayer spacing for excellent storage capability is demonstrated. After cetyltrimethylammonium bromide pretreatment, S atoms are successfully intercalated into the interlayer of Ti3C2 to form a desirable interlayer‐expanded structure via TiS bonding, while pristine Ti3C2 is hardly to be intercalated. When the annealing temperature is 450 °C, the S atoms intercalated Ti3C2 (CT‐S@Ti3C2‐450) electrode delivers the improved Na‐ion capacity of 550 mAh g−1 at 0.1 A g−1 (≈120 mAh g−1 at 15 A g−1, the best MXene‐based Na+‐storage rate performance reported so far), and excellent cycling stability over 5000 cycles at 10 A g−1 by enhanced pseudocapacitance. The enhanced sodium‐ion storage capability has also been verified by theoretical calculations and kinetic analysis. Coupling the CT‐S@Ti3C2‐450 anode with commercial AC cathode, the assembled Na+ capacitor delivers high energy density (263.2 Wh kg−1) under high power density (8240 W kg−1), and outstanding cycling performance.
Sulfur atoms intercalated Ti3C2 MXene, which serves as a high‐performance electrode for sodium‐ion storage. After cetyltrimethylammonium bromide pretreatment, S atoms are successfully intercalated into the interlayer of Ti3C2 to form a desirable interlayer‐expanded structure via TiS bonding. S atoms intercalated Ti3C2 annealed at 450 °C exhibits fast Na‐ion storage kinetics and incremental storage sites after S atoms intercalation.</description><subject>atomic sulfur covalence</subject><subject>Cetyltrimethylammonium bromide</subject><subject>Cycles</subject><subject>Electrical resistivity</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Interlayers</subject><subject>Ion storage</subject><subject>Materials science</subject><subject>MXene</subject><subject>MXenes</subject><subject>Pretreatment</subject><subject>pseudocapacitance</subject><subject>Sodium</subject><subject>sodium‐ion storage</subject><subject>Ti3C2</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Kw0AURgdRsFa3rgdct85PkplZlthqoUWhLXQXpjM3NSXJ1EmiZCc-gc_ok5igdHXvd_k4Fw5Ct5SMKSHsXtu0GDNCJZGUiDM0oBGNRpwweX7a6fYSXVXVgRAqBA8G6GtSuyIzeNXkaeNx7N51DmWdt3ha7rMSwIPF87IGn-sWfIVditcZjxlebqEEnDqPN3nt9c_n90xXNV45mzVFl-auxKvaeb0HvOtxr7o0HeylgsY6o4_aZHV_ukYXqc4ruPmfQ7SZTdfx02jx_DiPJ4vRnkVSjOhORCGJlFKcaKF5FHLJtQGjooCCJaFh1gaMGVCS7awQlIUMtJCBIsLogA_R3R_36N1bA1WdHFzjy-5lwqgUSioSiq6l_lofWQ5tcvRZoX2bUJL0kpNecnKSnEweZstT4r9NLnT7</recordid><startdate>20190307</startdate><enddate>20190307</enddate><creator>Luo, Jianmin</creator><creator>Zheng, Jianhui</creator><creator>Nai, Jianwei</creator><creator>Jin, Chengbin</creator><creator>Yuan, Huadong</creator><creator>Sheng, Ouwei</creator><creator>Liu, Yujing</creator><creator>Fang, Ruyi</creator><creator>Zhang, Wenkui</creator><creator>Huang, Hui</creator><creator>Gan, Yongping</creator><creator>Xia, Yang</creator><creator>Liang, Chu</creator><creator>Zhang, Jun</creator><creator>Li, Weiyang</creator><creator>Tao, Xinyong</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4084-7743</orcidid></search><sort><creationdate>20190307</creationdate><title>Atomic Sulfur Covalently Engineered Interlayers of Ti3C2 MXene for Ultra‐Fast Sodium‐Ion Storage by Enhanced Pseudocapacitance</title><author>Luo, Jianmin ; Zheng, Jianhui ; Nai, Jianwei ; Jin, Chengbin ; Yuan, Huadong ; Sheng, Ouwei ; Liu, Yujing ; Fang, Ruyi ; Zhang, Wenkui ; Huang, Hui ; Gan, Yongping ; Xia, Yang ; Liang, Chu ; Zhang, Jun ; Li, Weiyang ; Tao, Xinyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2687-1b7650699930a7a365383acec9641ed05c2dd422ce982bd771252ea784907ca43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>atomic sulfur covalence</topic><topic>Cetyltrimethylammonium bromide</topic><topic>Cycles</topic><topic>Electrical resistivity</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Interlayers</topic><topic>Ion storage</topic><topic>Materials science</topic><topic>MXene</topic><topic>MXenes</topic><topic>Pretreatment</topic><topic>pseudocapacitance</topic><topic>Sodium</topic><topic>sodium‐ion storage</topic><topic>Ti3C2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Jianmin</creatorcontrib><creatorcontrib>Zheng, Jianhui</creatorcontrib><creatorcontrib>Nai, Jianwei</creatorcontrib><creatorcontrib>Jin, Chengbin</creatorcontrib><creatorcontrib>Yuan, Huadong</creatorcontrib><creatorcontrib>Sheng, Ouwei</creatorcontrib><creatorcontrib>Liu, Yujing</creatorcontrib><creatorcontrib>Fang, Ruyi</creatorcontrib><creatorcontrib>Zhang, Wenkui</creatorcontrib><creatorcontrib>Huang, Hui</creatorcontrib><creatorcontrib>Gan, Yongping</creatorcontrib><creatorcontrib>Xia, Yang</creatorcontrib><creatorcontrib>Liang, Chu</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Li, Weiyang</creatorcontrib><creatorcontrib>Tao, Xinyong</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Jianmin</au><au>Zheng, Jianhui</au><au>Nai, Jianwei</au><au>Jin, Chengbin</au><au>Yuan, Huadong</au><au>Sheng, Ouwei</au><au>Liu, Yujing</au><au>Fang, Ruyi</au><au>Zhang, Wenkui</au><au>Huang, Hui</au><au>Gan, Yongping</au><au>Xia, Yang</au><au>Liang, Chu</au><au>Zhang, Jun</au><au>Li, Weiyang</au><au>Tao, Xinyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic Sulfur Covalently Engineered Interlayers of Ti3C2 MXene for Ultra‐Fast Sodium‐Ion Storage by Enhanced Pseudocapacitance</atitle><jtitle>Advanced functional materials</jtitle><date>2019-03-07</date><risdate>2019</risdate><volume>29</volume><issue>10</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>2D MXenes have been widely applied in the field of electrochemical energy storage owning to their high electrical conductivity and large redox‐active surface area. However, electrodes made from multilayered MXene with small interlayer spacing exhibit sluggish kinetics with low capacity for sodium‐ion storage. Herein, Ti3C2 MXene with expanded and engineered interlayer spacing for excellent storage capability is demonstrated. After cetyltrimethylammonium bromide pretreatment, S atoms are successfully intercalated into the interlayer of Ti3C2 to form a desirable interlayer‐expanded structure via TiS bonding, while pristine Ti3C2 is hardly to be intercalated. When the annealing temperature is 450 °C, the S atoms intercalated Ti3C2 (CT‐S@Ti3C2‐450) electrode delivers the improved Na‐ion capacity of 550 mAh g−1 at 0.1 A g−1 (≈120 mAh g−1 at 15 A g−1, the best MXene‐based Na+‐storage rate performance reported so far), and excellent cycling stability over 5000 cycles at 10 A g−1 by enhanced pseudocapacitance. The enhanced sodium‐ion storage capability has also been verified by theoretical calculations and kinetic analysis. Coupling the CT‐S@Ti3C2‐450 anode with commercial AC cathode, the assembled Na+ capacitor delivers high energy density (263.2 Wh kg−1) under high power density (8240 W kg−1), and outstanding cycling performance.
Sulfur atoms intercalated Ti3C2 MXene, which serves as a high‐performance electrode for sodium‐ion storage. After cetyltrimethylammonium bromide pretreatment, S atoms are successfully intercalated into the interlayer of Ti3C2 to form a desirable interlayer‐expanded structure via TiS bonding. S atoms intercalated Ti3C2 annealed at 450 °C exhibits fast Na‐ion storage kinetics and incremental storage sites after S atoms intercalation.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201808107</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4084-7743</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2019-03, Vol.29 (10), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2187989057 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | atomic sulfur covalence Cetyltrimethylammonium bromide Cycles Electrical resistivity Electrodes Energy storage Flux density Interlayers Ion storage Materials science MXene MXenes Pretreatment pseudocapacitance Sodium sodium‐ion storage Ti3C2 |
title | Atomic Sulfur Covalently Engineered Interlayers of Ti3C2 MXene for Ultra‐Fast Sodium‐Ion Storage by Enhanced Pseudocapacitance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A41%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20Sulfur%20Covalently%20Engineered%20Interlayers%20of%20Ti3C2%20MXene%20for%20Ultra%E2%80%90Fast%20Sodium%E2%80%90Ion%20Storage%20by%20Enhanced%20Pseudocapacitance&rft.jtitle=Advanced%20functional%20materials&rft.au=Luo,%20Jianmin&rft.date=2019-03-07&rft.volume=29&rft.issue=10&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201808107&rft_dat=%3Cproquest_wiley%3E2187989057%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187989057&rft_id=info:pmid/&rfr_iscdi=true |