Carbon-encapsulated ultrathin MoS2 nanosheets epitaxially grown on porous metallic TiNb2O6 microspheres with unsaturated oxygen atoms for superior potassium storage

Rechargeable potassium-ion batteries (KIBs) have emerged as promising alternatives to lithium-ion batteries (LIBs) in large-scale applications due to the abundant and low-cost potassium resources. To date, only a few suitable potassium storage materials have been reported due to the large-sized pota...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (10), p.5760-5768
Hauptverfasser: Xing, Lidong, Yu, Qiyao, Jiang, Bo, Chu, Jianhua, Cheng-Yen Lao, Wang, Min, Han, Kun, Liu, Zhiwei, Bao, Yanping, Wei (Alex) Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5768
container_issue 10
container_start_page 5760
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 7
creator Xing, Lidong
Yu, Qiyao
Jiang, Bo
Chu, Jianhua
Cheng-Yen Lao
Wang, Min
Han, Kun
Liu, Zhiwei
Bao, Yanping
Wei (Alex) Wang
description Rechargeable potassium-ion batteries (KIBs) have emerged as promising alternatives to lithium-ion batteries (LIBs) in large-scale applications due to the abundant and low-cost potassium resources. To date, only a few suitable potassium storage materials have been reported due to the large-sized potassium ions and sluggish kinetics. Herein, we design a three-layered heterostructure with porous metallic TiNb2O6 as the core and carbon-encapsulated MoS2 nanosheets as the shell (denoted as TiNb2O6@MoS2/C) as an advanced anode for KIBs. This hybrid configuration can significantly enhance the electronic conductivity from the interior to the exterior by virtue of the oxygen-atom-unsaturated metallic TiNb2O6 core. Furthermore, the amorphous carbon shell plays a crucial role to inhibit the particle agglomeration, accommodate the volume expansion and protect the active material from pulverization because of the three-layered heterostructure. As a result, impressive electrochemical behavior with high capacity (424 mA h g−1 at 0.1 A g−1 after 50 cycles) and high cycling stability (175 mA h g−1 at 1.0 A g−1 after 300 cycles) is achieved. This work opens the door for designing highly conductive heterostructures for energy storage devices.
doi_str_mv 10.1039/c8ta12497c
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2187970883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187970883</sourcerecordid><originalsourceid>FETCH-LOGICAL-g222t-32d7c562dfc23ed48b17c69d610fa04844560238de8b98c9739a560246c855fb3</originalsourceid><addsrcrecordid>eNo9jctOwzAURC0EEhV0wxdYYh1w7MSxl6jiJRW6oKwrx3ESV4kdfG21_R8-lPIQs5nRWcxB6ConNzlh8laLqHJayEqfoBklJcmqQvLT_y3EOZoDbMkxghAu5Qx9LlSovcuM02qCNKhoGpyGGFTsrcMv_o1ip5yH3pgI2Ew2qr1Vw3DAXfA7h73Dkw8-AR5NPHKr8dq-1nTF8Wh18DD1JhjAOxt7nByomMKPxO8PnXFYRT8Cbn3AkCYT7HFMPioAm0YM0QfVmUt01qoBzPyvL9D7w_168ZQtV4_Pi7tl1lFKY8ZoU-mS06bVlJmmEHVeaS4bnpNWkUIURckJZaIxopZCy4pJ9U0KrkVZtjW7QNe_v1PwH8lA3Gx9Cu6o3NBcVLIiQjD2BWcYcas</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187970883</pqid></control><display><type>article</type><title>Carbon-encapsulated ultrathin MoS2 nanosheets epitaxially grown on porous metallic TiNb2O6 microspheres with unsaturated oxygen atoms for superior potassium storage</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Xing, Lidong ; Yu, Qiyao ; Jiang, Bo ; Chu, Jianhua ; Cheng-Yen Lao ; Wang, Min ; Han, Kun ; Liu, Zhiwei ; Bao, Yanping ; Wei (Alex) Wang</creator><creatorcontrib>Xing, Lidong ; Yu, Qiyao ; Jiang, Bo ; Chu, Jianhua ; Cheng-Yen Lao ; Wang, Min ; Han, Kun ; Liu, Zhiwei ; Bao, Yanping ; Wei (Alex) Wang</creatorcontrib><description>Rechargeable potassium-ion batteries (KIBs) have emerged as promising alternatives to lithium-ion batteries (LIBs) in large-scale applications due to the abundant and low-cost potassium resources. To date, only a few suitable potassium storage materials have been reported due to the large-sized potassium ions and sluggish kinetics. Herein, we design a three-layered heterostructure with porous metallic TiNb2O6 as the core and carbon-encapsulated MoS2 nanosheets as the shell (denoted as TiNb2O6@MoS2/C) as an advanced anode for KIBs. This hybrid configuration can significantly enhance the electronic conductivity from the interior to the exterior by virtue of the oxygen-atom-unsaturated metallic TiNb2O6 core. Furthermore, the amorphous carbon shell plays a crucial role to inhibit the particle agglomeration, accommodate the volume expansion and protect the active material from pulverization because of the three-layered heterostructure. As a result, impressive electrochemical behavior with high capacity (424 mA h g−1 at 0.1 A g−1 after 50 cycles) and high cycling stability (175 mA h g−1 at 1.0 A g−1 after 300 cycles) is achieved. This work opens the door for designing highly conductive heterostructures for energy storage devices.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c8ta12497c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Batteries ; Carbon ; Electrochemical analysis ; Electrochemistry ; Encapsulation ; Energy storage ; Epitaxial growth ; Heterostructures ; Kinetics ; Lithium ; Lithium-ion batteries ; Microspheres ; Molybdenum disulfide ; Nanosheets ; Oxygen ; Oxygen atoms ; Potassium ; Rechargeable batteries ; X ray photoelectron spectroscopy</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (10), p.5760-5768</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Xing, Lidong</creatorcontrib><creatorcontrib>Yu, Qiyao</creatorcontrib><creatorcontrib>Jiang, Bo</creatorcontrib><creatorcontrib>Chu, Jianhua</creatorcontrib><creatorcontrib>Cheng-Yen Lao</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Han, Kun</creatorcontrib><creatorcontrib>Liu, Zhiwei</creatorcontrib><creatorcontrib>Bao, Yanping</creatorcontrib><creatorcontrib>Wei (Alex) Wang</creatorcontrib><title>Carbon-encapsulated ultrathin MoS2 nanosheets epitaxially grown on porous metallic TiNb2O6 microspheres with unsaturated oxygen atoms for superior potassium storage</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Rechargeable potassium-ion batteries (KIBs) have emerged as promising alternatives to lithium-ion batteries (LIBs) in large-scale applications due to the abundant and low-cost potassium resources. To date, only a few suitable potassium storage materials have been reported due to the large-sized potassium ions and sluggish kinetics. Herein, we design a three-layered heterostructure with porous metallic TiNb2O6 as the core and carbon-encapsulated MoS2 nanosheets as the shell (denoted as TiNb2O6@MoS2/C) as an advanced anode for KIBs. This hybrid configuration can significantly enhance the electronic conductivity from the interior to the exterior by virtue of the oxygen-atom-unsaturated metallic TiNb2O6 core. Furthermore, the amorphous carbon shell plays a crucial role to inhibit the particle agglomeration, accommodate the volume expansion and protect the active material from pulverization because of the three-layered heterostructure. As a result, impressive electrochemical behavior with high capacity (424 mA h g−1 at 0.1 A g−1 after 50 cycles) and high cycling stability (175 mA h g−1 at 1.0 A g−1 after 300 cycles) is achieved. This work opens the door for designing highly conductive heterostructures for energy storage devices.</description><subject>Batteries</subject><subject>Carbon</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Encapsulation</subject><subject>Energy storage</subject><subject>Epitaxial growth</subject><subject>Heterostructures</subject><subject>Kinetics</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Microspheres</subject><subject>Molybdenum disulfide</subject><subject>Nanosheets</subject><subject>Oxygen</subject><subject>Oxygen atoms</subject><subject>Potassium</subject><subject>Rechargeable batteries</subject><subject>X ray photoelectron spectroscopy</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9jctOwzAURC0EEhV0wxdYYh1w7MSxl6jiJRW6oKwrx3ESV4kdfG21_R8-lPIQs5nRWcxB6ConNzlh8laLqHJayEqfoBklJcmqQvLT_y3EOZoDbMkxghAu5Qx9LlSovcuM02qCNKhoGpyGGFTsrcMv_o1ip5yH3pgI2Ew2qr1Vw3DAXfA7h73Dkw8-AR5NPHKr8dq-1nTF8Wh18DD1JhjAOxt7nByomMKPxO8PnXFYRT8Cbn3AkCYT7HFMPioAm0YM0QfVmUt01qoBzPyvL9D7w_168ZQtV4_Pi7tl1lFKY8ZoU-mS06bVlJmmEHVeaS4bnpNWkUIURckJZaIxopZCy4pJ9U0KrkVZtjW7QNe_v1PwH8lA3Gx9Cu6o3NBcVLIiQjD2BWcYcas</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Xing, Lidong</creator><creator>Yu, Qiyao</creator><creator>Jiang, Bo</creator><creator>Chu, Jianhua</creator><creator>Cheng-Yen Lao</creator><creator>Wang, Min</creator><creator>Han, Kun</creator><creator>Liu, Zhiwei</creator><creator>Bao, Yanping</creator><creator>Wei (Alex) Wang</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>2019</creationdate><title>Carbon-encapsulated ultrathin MoS2 nanosheets epitaxially grown on porous metallic TiNb2O6 microspheres with unsaturated oxygen atoms for superior potassium storage</title><author>Xing, Lidong ; Yu, Qiyao ; Jiang, Bo ; Chu, Jianhua ; Cheng-Yen Lao ; Wang, Min ; Han, Kun ; Liu, Zhiwei ; Bao, Yanping ; Wei (Alex) Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g222t-32d7c562dfc23ed48b17c69d610fa04844560238de8b98c9739a560246c855fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Batteries</topic><topic>Carbon</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Encapsulation</topic><topic>Energy storage</topic><topic>Epitaxial growth</topic><topic>Heterostructures</topic><topic>Kinetics</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Microspheres</topic><topic>Molybdenum disulfide</topic><topic>Nanosheets</topic><topic>Oxygen</topic><topic>Oxygen atoms</topic><topic>Potassium</topic><topic>Rechargeable batteries</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Lidong</creatorcontrib><creatorcontrib>Yu, Qiyao</creatorcontrib><creatorcontrib>Jiang, Bo</creatorcontrib><creatorcontrib>Chu, Jianhua</creatorcontrib><creatorcontrib>Cheng-Yen Lao</creatorcontrib><creatorcontrib>Wang, Min</creatorcontrib><creatorcontrib>Han, Kun</creatorcontrib><creatorcontrib>Liu, Zhiwei</creatorcontrib><creatorcontrib>Bao, Yanping</creatorcontrib><creatorcontrib>Wei (Alex) Wang</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, Lidong</au><au>Yu, Qiyao</au><au>Jiang, Bo</au><au>Chu, Jianhua</au><au>Cheng-Yen Lao</au><au>Wang, Min</au><au>Han, Kun</au><au>Liu, Zhiwei</au><au>Bao, Yanping</au><au>Wei (Alex) Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon-encapsulated ultrathin MoS2 nanosheets epitaxially grown on porous metallic TiNb2O6 microspheres with unsaturated oxygen atoms for superior potassium storage</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>10</issue><spage>5760</spage><epage>5768</epage><pages>5760-5768</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Rechargeable potassium-ion batteries (KIBs) have emerged as promising alternatives to lithium-ion batteries (LIBs) in large-scale applications due to the abundant and low-cost potassium resources. To date, only a few suitable potassium storage materials have been reported due to the large-sized potassium ions and sluggish kinetics. Herein, we design a three-layered heterostructure with porous metallic TiNb2O6 as the core and carbon-encapsulated MoS2 nanosheets as the shell (denoted as TiNb2O6@MoS2/C) as an advanced anode for KIBs. This hybrid configuration can significantly enhance the electronic conductivity from the interior to the exterior by virtue of the oxygen-atom-unsaturated metallic TiNb2O6 core. Furthermore, the amorphous carbon shell plays a crucial role to inhibit the particle agglomeration, accommodate the volume expansion and protect the active material from pulverization because of the three-layered heterostructure. As a result, impressive electrochemical behavior with high capacity (424 mA h g−1 at 0.1 A g−1 after 50 cycles) and high cycling stability (175 mA h g−1 at 1.0 A g−1 after 300 cycles) is achieved. This work opens the door for designing highly conductive heterostructures for energy storage devices.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c8ta12497c</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (10), p.5760-5768
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2187970883
source Royal Society Of Chemistry Journals 2008-
subjects Batteries
Carbon
Electrochemical analysis
Electrochemistry
Encapsulation
Energy storage
Epitaxial growth
Heterostructures
Kinetics
Lithium
Lithium-ion batteries
Microspheres
Molybdenum disulfide
Nanosheets
Oxygen
Oxygen atoms
Potassium
Rechargeable batteries
X ray photoelectron spectroscopy
title Carbon-encapsulated ultrathin MoS2 nanosheets epitaxially grown on porous metallic TiNb2O6 microspheres with unsaturated oxygen atoms for superior potassium storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A36%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon-encapsulated%20ultrathin%20MoS2%20nanosheets%20epitaxially%20grown%20on%20porous%20metallic%20TiNb2O6%20microspheres%20with%20unsaturated%20oxygen%20atoms%20for%20superior%20potassium%20storage&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Xing,%20Lidong&rft.date=2019&rft.volume=7&rft.issue=10&rft.spage=5760&rft.epage=5768&rft.pages=5760-5768&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c8ta12497c&rft_dat=%3Cproquest%3E2187970883%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187970883&rft_id=info:pmid/&rfr_iscdi=true