Novel Stabilization Criteria for T-S Fuzzy Systems With Affine Matched Membership Functions

This paper presents a new parallel distributed compensation controller design approach for T-S (Takagi-Sugeno) fuzzy control systems with affine matched membership functions in the system and controller. In the new fuzzy control, affine transformed membership functions are adopted by scaling and bia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2019-03, Vol.27 (3), p.540-548
1. Verfasser: Lee, Sangmoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 548
container_issue 3
container_start_page 540
container_title IEEE transactions on fuzzy systems
container_volume 27
creator Lee, Sangmoon
description This paper presents a new parallel distributed compensation controller design approach for T-S (Takagi-Sugeno) fuzzy control systems with affine matched membership functions in the system and controller. In the new fuzzy control, affine transformed membership functions are adopted by scaling and biasing the original membership functions of the system. Stabilization and performance criterion of the closed-loop T-S fuzzy systems are obtained through a new parameterized linear matrix inequality, which is rearranged by affine matched membership functions. The conservativeness of stabilization condition for the T-S fuzzy system is significantly relaxed by utilizing the constraints condition of the controllers membership functions, which is determined from the difference of each transformed membership function. In addition, the controller gain is reconstructed by a decision variable separation technique with two different free weighting matrices without any scaling parameter. The superiority of proposed method is verified through numerical examples.
doi_str_mv 10.1109/TFUZZ.2018.2863223
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2187965093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8425757</ieee_id><sourcerecordid>2187965093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-c1cd8fca867cea79627e6e2b213bbd4919e5040d630db2c274ed6e34edc097f73</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYj-Ab008bxrP3bb7ZEQURPQAxATPDTd7mwogV1siwn8ehchXmbm8LzvJA9C95SklBL1NBvNF4uUEVqkrBCcMX6BelRlNCGEZ5fdTQRPhCTiGt2EsCKEZjkteujrvf2BNZ5GU7q1O5jo2gYPvYvgncF16_EsmeLR7nDY4-k-RNgE_OniEg_q2jWAJybaJVR4ApsSfFi6bQc39lgTbtFVbdYB7s67j-aj59nwNRl_vLwNB-PEMpXHxFJbFbU1hZAWjFSCSRDASkZ5WVaZogpykpFKcFKVzDKZQSWAd9MSJWvJ--jx1Lv17fcOQtSrdueb7qVmtOgKc6J4R7ETZX0bgodab73bGL_XlOijRP0nUR8l6rPELvRwCjkA-A8UGctlLvkvsNdupw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187965093</pqid></control><display><type>article</type><title>Novel Stabilization Criteria for T-S Fuzzy Systems With Affine Matched Membership Functions</title><source>IEEE Electronic Library (IEL)</source><creator>Lee, Sangmoon</creator><creatorcontrib>Lee, Sangmoon</creatorcontrib><description>This paper presents a new parallel distributed compensation controller design approach for T-S (Takagi-Sugeno) fuzzy control systems with affine matched membership functions in the system and controller. In the new fuzzy control, affine transformed membership functions are adopted by scaling and biasing the original membership functions of the system. Stabilization and performance criterion of the closed-loop T-S fuzzy systems are obtained through a new parameterized linear matrix inequality, which is rearranged by affine matched membership functions. The conservativeness of stabilization condition for the T-S fuzzy system is significantly relaxed by utilizing the constraints condition of the controllers membership functions, which is determined from the difference of each transformed membership function. In addition, the controller gain is reconstructed by a decision variable separation technique with two different free weighting matrices without any scaling parameter. The superiority of proposed method is verified through numerical examples.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2018.2863223</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Affine matched premises ; Control systems design ; Controllers ; Decision support systems ; Entrepreneurs ; Fuzzy control ; Fuzzy systems ; Linear matrix inequalities ; Lyapunov methods ; Matrix methods ; parameterized linear matrix inequality ; PD control ; Scaling ; Stabilization ; stabilization criterion ; Symmetric matrices ; T–S (Takagi–Sugeno) fuzzy systems</subject><ispartof>IEEE transactions on fuzzy systems, 2019-03, Vol.27 (3), p.540-548</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-c1cd8fca867cea79627e6e2b213bbd4919e5040d630db2c274ed6e34edc097f73</citedby><cites>FETCH-LOGICAL-c295t-c1cd8fca867cea79627e6e2b213bbd4919e5040d630db2c274ed6e34edc097f73</cites><orcidid>0000-0001-8252-952X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8425757$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8425757$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, Sangmoon</creatorcontrib><title>Novel Stabilization Criteria for T-S Fuzzy Systems With Affine Matched Membership Functions</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>This paper presents a new parallel distributed compensation controller design approach for T-S (Takagi-Sugeno) fuzzy control systems with affine matched membership functions in the system and controller. In the new fuzzy control, affine transformed membership functions are adopted by scaling and biasing the original membership functions of the system. Stabilization and performance criterion of the closed-loop T-S fuzzy systems are obtained through a new parameterized linear matrix inequality, which is rearranged by affine matched membership functions. The conservativeness of stabilization condition for the T-S fuzzy system is significantly relaxed by utilizing the constraints condition of the controllers membership functions, which is determined from the difference of each transformed membership function. In addition, the controller gain is reconstructed by a decision variable separation technique with two different free weighting matrices without any scaling parameter. The superiority of proposed method is verified through numerical examples.</description><subject>Affine matched premises</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Decision support systems</subject><subject>Entrepreneurs</subject><subject>Fuzzy control</subject><subject>Fuzzy systems</subject><subject>Linear matrix inequalities</subject><subject>Lyapunov methods</subject><subject>Matrix methods</subject><subject>parameterized linear matrix inequality</subject><subject>PD control</subject><subject>Scaling</subject><subject>Stabilization</subject><subject>stabilization criterion</subject><subject>Symmetric matrices</subject><subject>T–S (Takagi–Sugeno) fuzzy systems</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiYj-Ab008bxrP3bb7ZEQURPQAxATPDTd7mwogV1siwn8ehchXmbm8LzvJA9C95SklBL1NBvNF4uUEVqkrBCcMX6BelRlNCGEZ5fdTQRPhCTiGt2EsCKEZjkteujrvf2BNZ5GU7q1O5jo2gYPvYvgncF16_EsmeLR7nDY4-k-RNgE_OniEg_q2jWAJybaJVR4ApsSfFi6bQc39lgTbtFVbdYB7s67j-aj59nwNRl_vLwNB-PEMpXHxFJbFbU1hZAWjFSCSRDASkZ5WVaZogpykpFKcFKVzDKZQSWAd9MSJWvJ--jx1Lv17fcOQtSrdueb7qVmtOgKc6J4R7ETZX0bgodab73bGL_XlOijRP0nUR8l6rPELvRwCjkA-A8UGctlLvkvsNdupw</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Lee, Sangmoon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8252-952X</orcidid></search><sort><creationdate>20190301</creationdate><title>Novel Stabilization Criteria for T-S Fuzzy Systems With Affine Matched Membership Functions</title><author>Lee, Sangmoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-c1cd8fca867cea79627e6e2b213bbd4919e5040d630db2c274ed6e34edc097f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Affine matched premises</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Decision support systems</topic><topic>Entrepreneurs</topic><topic>Fuzzy control</topic><topic>Fuzzy systems</topic><topic>Linear matrix inequalities</topic><topic>Lyapunov methods</topic><topic>Matrix methods</topic><topic>parameterized linear matrix inequality</topic><topic>PD control</topic><topic>Scaling</topic><topic>Stabilization</topic><topic>stabilization criterion</topic><topic>Symmetric matrices</topic><topic>T–S (Takagi–Sugeno) fuzzy systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sangmoon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Sangmoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Stabilization Criteria for T-S Fuzzy Systems With Affine Matched Membership Functions</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>27</volume><issue>3</issue><spage>540</spage><epage>548</epage><pages>540-548</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>This paper presents a new parallel distributed compensation controller design approach for T-S (Takagi-Sugeno) fuzzy control systems with affine matched membership functions in the system and controller. In the new fuzzy control, affine transformed membership functions are adopted by scaling and biasing the original membership functions of the system. Stabilization and performance criterion of the closed-loop T-S fuzzy systems are obtained through a new parameterized linear matrix inequality, which is rearranged by affine matched membership functions. The conservativeness of stabilization condition for the T-S fuzzy system is significantly relaxed by utilizing the constraints condition of the controllers membership functions, which is determined from the difference of each transformed membership function. In addition, the controller gain is reconstructed by a decision variable separation technique with two different free weighting matrices without any scaling parameter. The superiority of proposed method is verified through numerical examples.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2018.2863223</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8252-952X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2019-03, Vol.27 (3), p.540-548
issn 1063-6706
1941-0034
language eng
recordid cdi_proquest_journals_2187965093
source IEEE Electronic Library (IEL)
subjects Affine matched premises
Control systems design
Controllers
Decision support systems
Entrepreneurs
Fuzzy control
Fuzzy systems
Linear matrix inequalities
Lyapunov methods
Matrix methods
parameterized linear matrix inequality
PD control
Scaling
Stabilization
stabilization criterion
Symmetric matrices
T–S (Takagi–Sugeno) fuzzy systems
title Novel Stabilization Criteria for T-S Fuzzy Systems With Affine Matched Membership Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A11%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Stabilization%20Criteria%20for%20T-S%20Fuzzy%20Systems%20With%20Affine%20Matched%20Membership%20Functions&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Lee,%20Sangmoon&rft.date=2019-03-01&rft.volume=27&rft.issue=3&rft.spage=540&rft.epage=548&rft.pages=540-548&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2018.2863223&rft_dat=%3Cproquest_RIE%3E2187965093%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187965093&rft_id=info:pmid/&rft_ieee_id=8425757&rfr_iscdi=true