Novel Stabilization Criteria for T-S Fuzzy Systems With Affine Matched Membership Functions
This paper presents a new parallel distributed compensation controller design approach for T-S (Takagi-Sugeno) fuzzy control systems with affine matched membership functions in the system and controller. In the new fuzzy control, affine transformed membership functions are adopted by scaling and bia...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on fuzzy systems 2019-03, Vol.27 (3), p.540-548 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 548 |
---|---|
container_issue | 3 |
container_start_page | 540 |
container_title | IEEE transactions on fuzzy systems |
container_volume | 27 |
creator | Lee, Sangmoon |
description | This paper presents a new parallel distributed compensation controller design approach for T-S (Takagi-Sugeno) fuzzy control systems with affine matched membership functions in the system and controller. In the new fuzzy control, affine transformed membership functions are adopted by scaling and biasing the original membership functions of the system. Stabilization and performance criterion of the closed-loop T-S fuzzy systems are obtained through a new parameterized linear matrix inequality, which is rearranged by affine matched membership functions. The conservativeness of stabilization condition for the T-S fuzzy system is significantly relaxed by utilizing the constraints condition of the controllers membership functions, which is determined from the difference of each transformed membership function. In addition, the controller gain is reconstructed by a decision variable separation technique with two different free weighting matrices without any scaling parameter. The superiority of proposed method is verified through numerical examples. |
doi_str_mv | 10.1109/TFUZZ.2018.2863223 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2187965093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8425757</ieee_id><sourcerecordid>2187965093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-c1cd8fca867cea79627e6e2b213bbd4919e5040d630db2c274ed6e34edc097f73</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYj-Ab008bxrP3bb7ZEQURPQAxATPDTd7mwogV1siwn8ehchXmbm8LzvJA9C95SklBL1NBvNF4uUEVqkrBCcMX6BelRlNCGEZ5fdTQRPhCTiGt2EsCKEZjkteujrvf2BNZ5GU7q1O5jo2gYPvYvgncF16_EsmeLR7nDY4-k-RNgE_OniEg_q2jWAJybaJVR4ApsSfFi6bQc39lgTbtFVbdYB7s67j-aj59nwNRl_vLwNB-PEMpXHxFJbFbU1hZAWjFSCSRDASkZ5WVaZogpykpFKcFKVzDKZQSWAd9MSJWvJ--jx1Lv17fcOQtSrdueb7qVmtOgKc6J4R7ETZX0bgodab73bGL_XlOijRP0nUR8l6rPELvRwCjkA-A8UGctlLvkvsNdupw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187965093</pqid></control><display><type>article</type><title>Novel Stabilization Criteria for T-S Fuzzy Systems With Affine Matched Membership Functions</title><source>IEEE Electronic Library (IEL)</source><creator>Lee, Sangmoon</creator><creatorcontrib>Lee, Sangmoon</creatorcontrib><description>This paper presents a new parallel distributed compensation controller design approach for T-S (Takagi-Sugeno) fuzzy control systems with affine matched membership functions in the system and controller. In the new fuzzy control, affine transformed membership functions are adopted by scaling and biasing the original membership functions of the system. Stabilization and performance criterion of the closed-loop T-S fuzzy systems are obtained through a new parameterized linear matrix inequality, which is rearranged by affine matched membership functions. The conservativeness of stabilization condition for the T-S fuzzy system is significantly relaxed by utilizing the constraints condition of the controllers membership functions, which is determined from the difference of each transformed membership function. In addition, the controller gain is reconstructed by a decision variable separation technique with two different free weighting matrices without any scaling parameter. The superiority of proposed method is verified through numerical examples.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2018.2863223</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Affine matched premises ; Control systems design ; Controllers ; Decision support systems ; Entrepreneurs ; Fuzzy control ; Fuzzy systems ; Linear matrix inequalities ; Lyapunov methods ; Matrix methods ; parameterized linear matrix inequality ; PD control ; Scaling ; Stabilization ; stabilization criterion ; Symmetric matrices ; T–S (Takagi–Sugeno) fuzzy systems</subject><ispartof>IEEE transactions on fuzzy systems, 2019-03, Vol.27 (3), p.540-548</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-c1cd8fca867cea79627e6e2b213bbd4919e5040d630db2c274ed6e34edc097f73</citedby><cites>FETCH-LOGICAL-c295t-c1cd8fca867cea79627e6e2b213bbd4919e5040d630db2c274ed6e34edc097f73</cites><orcidid>0000-0001-8252-952X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8425757$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8425757$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, Sangmoon</creatorcontrib><title>Novel Stabilization Criteria for T-S Fuzzy Systems With Affine Matched Membership Functions</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>This paper presents a new parallel distributed compensation controller design approach for T-S (Takagi-Sugeno) fuzzy control systems with affine matched membership functions in the system and controller. In the new fuzzy control, affine transformed membership functions are adopted by scaling and biasing the original membership functions of the system. Stabilization and performance criterion of the closed-loop T-S fuzzy systems are obtained through a new parameterized linear matrix inequality, which is rearranged by affine matched membership functions. The conservativeness of stabilization condition for the T-S fuzzy system is significantly relaxed by utilizing the constraints condition of the controllers membership functions, which is determined from the difference of each transformed membership function. In addition, the controller gain is reconstructed by a decision variable separation technique with two different free weighting matrices without any scaling parameter. The superiority of proposed method is verified through numerical examples.</description><subject>Affine matched premises</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Decision support systems</subject><subject>Entrepreneurs</subject><subject>Fuzzy control</subject><subject>Fuzzy systems</subject><subject>Linear matrix inequalities</subject><subject>Lyapunov methods</subject><subject>Matrix methods</subject><subject>parameterized linear matrix inequality</subject><subject>PD control</subject><subject>Scaling</subject><subject>Stabilization</subject><subject>stabilization criterion</subject><subject>Symmetric matrices</subject><subject>T–S (Takagi–Sugeno) fuzzy systems</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiYj-Ab008bxrP3bb7ZEQURPQAxATPDTd7mwogV1siwn8ehchXmbm8LzvJA9C95SklBL1NBvNF4uUEVqkrBCcMX6BelRlNCGEZ5fdTQRPhCTiGt2EsCKEZjkteujrvf2BNZ5GU7q1O5jo2gYPvYvgncF16_EsmeLR7nDY4-k-RNgE_OniEg_q2jWAJybaJVR4ApsSfFi6bQc39lgTbtFVbdYB7s67j-aj59nwNRl_vLwNB-PEMpXHxFJbFbU1hZAWjFSCSRDASkZ5WVaZogpykpFKcFKVzDKZQSWAd9MSJWvJ--jx1Lv17fcOQtSrdueb7qVmtOgKc6J4R7ETZX0bgodab73bGL_XlOijRP0nUR8l6rPELvRwCjkA-A8UGctlLvkvsNdupw</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Lee, Sangmoon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8252-952X</orcidid></search><sort><creationdate>20190301</creationdate><title>Novel Stabilization Criteria for T-S Fuzzy Systems With Affine Matched Membership Functions</title><author>Lee, Sangmoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-c1cd8fca867cea79627e6e2b213bbd4919e5040d630db2c274ed6e34edc097f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Affine matched premises</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Decision support systems</topic><topic>Entrepreneurs</topic><topic>Fuzzy control</topic><topic>Fuzzy systems</topic><topic>Linear matrix inequalities</topic><topic>Lyapunov methods</topic><topic>Matrix methods</topic><topic>parameterized linear matrix inequality</topic><topic>PD control</topic><topic>Scaling</topic><topic>Stabilization</topic><topic>stabilization criterion</topic><topic>Symmetric matrices</topic><topic>T–S (Takagi–Sugeno) fuzzy systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sangmoon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Sangmoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel Stabilization Criteria for T-S Fuzzy Systems With Affine Matched Membership Functions</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>27</volume><issue>3</issue><spage>540</spage><epage>548</epage><pages>540-548</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>This paper presents a new parallel distributed compensation controller design approach for T-S (Takagi-Sugeno) fuzzy control systems with affine matched membership functions in the system and controller. In the new fuzzy control, affine transformed membership functions are adopted by scaling and biasing the original membership functions of the system. Stabilization and performance criterion of the closed-loop T-S fuzzy systems are obtained through a new parameterized linear matrix inequality, which is rearranged by affine matched membership functions. The conservativeness of stabilization condition for the T-S fuzzy system is significantly relaxed by utilizing the constraints condition of the controllers membership functions, which is determined from the difference of each transformed membership function. In addition, the controller gain is reconstructed by a decision variable separation technique with two different free weighting matrices without any scaling parameter. The superiority of proposed method is verified through numerical examples.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2018.2863223</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8252-952X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6706 |
ispartof | IEEE transactions on fuzzy systems, 2019-03, Vol.27 (3), p.540-548 |
issn | 1063-6706 1941-0034 |
language | eng |
recordid | cdi_proquest_journals_2187965093 |
source | IEEE Electronic Library (IEL) |
subjects | Affine matched premises Control systems design Controllers Decision support systems Entrepreneurs Fuzzy control Fuzzy systems Linear matrix inequalities Lyapunov methods Matrix methods parameterized linear matrix inequality PD control Scaling Stabilization stabilization criterion Symmetric matrices T–S (Takagi–Sugeno) fuzzy systems |
title | Novel Stabilization Criteria for T-S Fuzzy Systems With Affine Matched Membership Functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A11%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20Stabilization%20Criteria%20for%20T-S%20Fuzzy%20Systems%20With%20Affine%20Matched%20Membership%20Functions&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Lee,%20Sangmoon&rft.date=2019-03-01&rft.volume=27&rft.issue=3&rft.spage=540&rft.epage=548&rft.pages=540-548&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2018.2863223&rft_dat=%3Cproquest_RIE%3E2187965093%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187965093&rft_id=info:pmid/&rft_ieee_id=8425757&rfr_iscdi=true |