Blast response of aluminium/thermoplastic polyurethane sandwich panels – experimental work and numerical analysis

•Novel sandwich structure subject to blast loading using PE4 explosives•Experimental and numerical work is covered•Thermoplastic polyurethane (TPU) is shown to be a promising material under blast•Pave the way for future design and development using this material This article presents experimental an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of impact engineering 2019-05, Vol.127, p.31-40
Hauptverfasser: Jamil, A., Guan, Z.W., Cantwell, W.J., Zhang, X.F., Langdon, G.S., Wang, Q.Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 40
container_issue
container_start_page 31
container_title International journal of impact engineering
container_volume 127
creator Jamil, A.
Guan, Z.W.
Cantwell, W.J.
Zhang, X.F.
Langdon, G.S.
Wang, Q.Y.
description •Novel sandwich structure subject to blast loading using PE4 explosives•Experimental and numerical work is covered•Thermoplastic polyurethane (TPU) is shown to be a promising material under blast•Pave the way for future design and development using this material This article presents experimental and numerical results following blast tests on a polyether grade thermoplastic polyurethane (TPU). Aluminium alloy (AA) 2024-T3 skins were used as facings to enhance the blast resistance of sandwich structures with TPU cores and varying thicknesses. The experimental results highlighted an improvement in blast resistance with the addition of skins to the TPU core. Increasing the thickness of the TPU core in the sandwich panels served to increase the blast resistance of the structure. For example a 20 mm core offered a blast resistance that was 50.2% higher than an equivalent 5 mm core and 71.2% higher than a plain (i.e. no skin) 5 mm TPU core. Numerical simulations of the blast response of the TPU panels were conducted by converting the explosive loading regime applied to the panels to a simplified pressure pulse loading. Good agreement was obtained between the numerical and experimental results for the back face deflection profiles through the central cross-sections of the panels.
doi_str_mv 10.1016/j.ijimpeng.2019.01.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2187918849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0734743X17306437</els_id><sourcerecordid>2187918849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-ba7ffa9bfae717bafdc6904b6a9755038c0121a9705c971e8b852bbd4ba835773</originalsourceid><addsrcrecordid>eNqFkM1KxDAUhYMoOP68ggRct95M20mz8wf_QHCj4C6k6a2T2iY1adXZ-Q6-oU9ihtG1q8u5nHO55yPkiEHKgC1O2tS0ph_QPqdzYCIFlgJkW2TGSi6SrACxTWbAszzhefa0S_ZCaAEYhwJmJJx3KozUYxicDUhdQ1U39caaqT8Zl-h7N6wdRtPBdavJ47hUFmlQtn43ekmHqLpAvz-_KH4M6E2PdlQdfXf-hUYTtVMftzqulFXdKphwQHYa1QU8_J375PHq8uHiJrm7v769OLtLdMbFmFSKN40SVaOQM16pptYLAXm1UIIXBWSlBjZnUUChBWdYVmUxr6o6r1SZFZxn--R4c3fw7nXCMMrWTT4-EeR8zYaVZS6ia7Fxae9C8NjIIZZQfiUZyDVg2co_wHINWAKTEXAMnm6CsT--GfQyaINWY2086lHWzvx34ge804wx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187918849</pqid></control><display><type>article</type><title>Blast response of aluminium/thermoplastic polyurethane sandwich panels – experimental work and numerical analysis</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Jamil, A. ; Guan, Z.W. ; Cantwell, W.J. ; Zhang, X.F. ; Langdon, G.S. ; Wang, Q.Y.</creator><creatorcontrib>Jamil, A. ; Guan, Z.W. ; Cantwell, W.J. ; Zhang, X.F. ; Langdon, G.S. ; Wang, Q.Y.</creatorcontrib><description>•Novel sandwich structure subject to blast loading using PE4 explosives•Experimental and numerical work is covered•Thermoplastic polyurethane (TPU) is shown to be a promising material under blast•Pave the way for future design and development using this material This article presents experimental and numerical results following blast tests on a polyether grade thermoplastic polyurethane (TPU). Aluminium alloy (AA) 2024-T3 skins were used as facings to enhance the blast resistance of sandwich structures with TPU cores and varying thicknesses. The experimental results highlighted an improvement in blast resistance with the addition of skins to the TPU core. Increasing the thickness of the TPU core in the sandwich panels served to increase the blast resistance of the structure. For example a 20 mm core offered a blast resistance that was 50.2% higher than an equivalent 5 mm core and 71.2% higher than a plain (i.e. no skin) 5 mm TPU core. Numerical simulations of the blast response of the TPU panels were conducted by converting the explosive loading regime applied to the panels to a simplified pressure pulse loading. Good agreement was obtained between the numerical and experimental results for the back face deflection profiles through the central cross-sections of the panels.</description><identifier>ISSN: 0734-743X</identifier><identifier>EISSN: 1879-3509</identifier><identifier>DOI: 10.1016/j.ijimpeng.2019.01.003</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aluminum base alloys ; Blast mitigation ; Blast resistance ; Blasting (explosive) ; Computer simulation ; Explosions ; Facings ; Finite element ; Numerical analysis ; Polyurethane resins ; Sandwich panel ; Sandwich panels ; Sandwich structures ; SHPB ; Structural response ; Thermoplastic polyurethane ; Thickness ; Urethane thermoplastic elastomers</subject><ispartof>International journal of impact engineering, 2019-05, Vol.127, p.31-40</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-ba7ffa9bfae717bafdc6904b6a9755038c0121a9705c971e8b852bbd4ba835773</citedby><cites>FETCH-LOGICAL-c379t-ba7ffa9bfae717bafdc6904b6a9755038c0121a9705c971e8b852bbd4ba835773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijimpeng.2019.01.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Jamil, A.</creatorcontrib><creatorcontrib>Guan, Z.W.</creatorcontrib><creatorcontrib>Cantwell, W.J.</creatorcontrib><creatorcontrib>Zhang, X.F.</creatorcontrib><creatorcontrib>Langdon, G.S.</creatorcontrib><creatorcontrib>Wang, Q.Y.</creatorcontrib><title>Blast response of aluminium/thermoplastic polyurethane sandwich panels – experimental work and numerical analysis</title><title>International journal of impact engineering</title><description>•Novel sandwich structure subject to blast loading using PE4 explosives•Experimental and numerical work is covered•Thermoplastic polyurethane (TPU) is shown to be a promising material under blast•Pave the way for future design and development using this material This article presents experimental and numerical results following blast tests on a polyether grade thermoplastic polyurethane (TPU). Aluminium alloy (AA) 2024-T3 skins were used as facings to enhance the blast resistance of sandwich structures with TPU cores and varying thicknesses. The experimental results highlighted an improvement in blast resistance with the addition of skins to the TPU core. Increasing the thickness of the TPU core in the sandwich panels served to increase the blast resistance of the structure. For example a 20 mm core offered a blast resistance that was 50.2% higher than an equivalent 5 mm core and 71.2% higher than a plain (i.e. no skin) 5 mm TPU core. Numerical simulations of the blast response of the TPU panels were conducted by converting the explosive loading regime applied to the panels to a simplified pressure pulse loading. Good agreement was obtained between the numerical and experimental results for the back face deflection profiles through the central cross-sections of the panels.</description><subject>Aluminum base alloys</subject><subject>Blast mitigation</subject><subject>Blast resistance</subject><subject>Blasting (explosive)</subject><subject>Computer simulation</subject><subject>Explosions</subject><subject>Facings</subject><subject>Finite element</subject><subject>Numerical analysis</subject><subject>Polyurethane resins</subject><subject>Sandwich panel</subject><subject>Sandwich panels</subject><subject>Sandwich structures</subject><subject>SHPB</subject><subject>Structural response</subject><subject>Thermoplastic polyurethane</subject><subject>Thickness</subject><subject>Urethane thermoplastic elastomers</subject><issn>0734-743X</issn><issn>1879-3509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KxDAUhYMoOP68ggRct95M20mz8wf_QHCj4C6k6a2T2iY1adXZ-Q6-oU9ihtG1q8u5nHO55yPkiEHKgC1O2tS0ph_QPqdzYCIFlgJkW2TGSi6SrACxTWbAszzhefa0S_ZCaAEYhwJmJJx3KozUYxicDUhdQ1U39caaqT8Zl-h7N6wdRtPBdavJ47hUFmlQtn43ekmHqLpAvz-_KH4M6E2PdlQdfXf-hUYTtVMftzqulFXdKphwQHYa1QU8_J375PHq8uHiJrm7v769OLtLdMbFmFSKN40SVaOQM16pptYLAXm1UIIXBWSlBjZnUUChBWdYVmUxr6o6r1SZFZxn--R4c3fw7nXCMMrWTT4-EeR8zYaVZS6ia7Fxae9C8NjIIZZQfiUZyDVg2co_wHINWAKTEXAMnm6CsT--GfQyaINWY2086lHWzvx34ge804wx</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Jamil, A.</creator><creator>Guan, Z.W.</creator><creator>Cantwell, W.J.</creator><creator>Zhang, X.F.</creator><creator>Langdon, G.S.</creator><creator>Wang, Q.Y.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20190501</creationdate><title>Blast response of aluminium/thermoplastic polyurethane sandwich panels – experimental work and numerical analysis</title><author>Jamil, A. ; Guan, Z.W. ; Cantwell, W.J. ; Zhang, X.F. ; Langdon, G.S. ; Wang, Q.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-ba7ffa9bfae717bafdc6904b6a9755038c0121a9705c971e8b852bbd4ba835773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum base alloys</topic><topic>Blast mitigation</topic><topic>Blast resistance</topic><topic>Blasting (explosive)</topic><topic>Computer simulation</topic><topic>Explosions</topic><topic>Facings</topic><topic>Finite element</topic><topic>Numerical analysis</topic><topic>Polyurethane resins</topic><topic>Sandwich panel</topic><topic>Sandwich panels</topic><topic>Sandwich structures</topic><topic>SHPB</topic><topic>Structural response</topic><topic>Thermoplastic polyurethane</topic><topic>Thickness</topic><topic>Urethane thermoplastic elastomers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jamil, A.</creatorcontrib><creatorcontrib>Guan, Z.W.</creatorcontrib><creatorcontrib>Cantwell, W.J.</creatorcontrib><creatorcontrib>Zhang, X.F.</creatorcontrib><creatorcontrib>Langdon, G.S.</creatorcontrib><creatorcontrib>Wang, Q.Y.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of impact engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jamil, A.</au><au>Guan, Z.W.</au><au>Cantwell, W.J.</au><au>Zhang, X.F.</au><au>Langdon, G.S.</au><au>Wang, Q.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blast response of aluminium/thermoplastic polyurethane sandwich panels – experimental work and numerical analysis</atitle><jtitle>International journal of impact engineering</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>127</volume><spage>31</spage><epage>40</epage><pages>31-40</pages><issn>0734-743X</issn><eissn>1879-3509</eissn><abstract>•Novel sandwich structure subject to blast loading using PE4 explosives•Experimental and numerical work is covered•Thermoplastic polyurethane (TPU) is shown to be a promising material under blast•Pave the way for future design and development using this material This article presents experimental and numerical results following blast tests on a polyether grade thermoplastic polyurethane (TPU). Aluminium alloy (AA) 2024-T3 skins were used as facings to enhance the blast resistance of sandwich structures with TPU cores and varying thicknesses. The experimental results highlighted an improvement in blast resistance with the addition of skins to the TPU core. Increasing the thickness of the TPU core in the sandwich panels served to increase the blast resistance of the structure. For example a 20 mm core offered a blast resistance that was 50.2% higher than an equivalent 5 mm core and 71.2% higher than a plain (i.e. no skin) 5 mm TPU core. Numerical simulations of the blast response of the TPU panels were conducted by converting the explosive loading regime applied to the panels to a simplified pressure pulse loading. Good agreement was obtained between the numerical and experimental results for the back face deflection profiles through the central cross-sections of the panels.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijimpeng.2019.01.003</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0734-743X
ispartof International journal of impact engineering, 2019-05, Vol.127, p.31-40
issn 0734-743X
1879-3509
language eng
recordid cdi_proquest_journals_2187918849
source ScienceDirect Journals (5 years ago - present)
subjects Aluminum base alloys
Blast mitigation
Blast resistance
Blasting (explosive)
Computer simulation
Explosions
Facings
Finite element
Numerical analysis
Polyurethane resins
Sandwich panel
Sandwich panels
Sandwich structures
SHPB
Structural response
Thermoplastic polyurethane
Thickness
Urethane thermoplastic elastomers
title Blast response of aluminium/thermoplastic polyurethane sandwich panels – experimental work and numerical analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A44%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blast%20response%20of%20aluminium/thermoplastic%20polyurethane%20sandwich%20panels%20%E2%80%93%20experimental%20work%20and%20numerical%20analysis&rft.jtitle=International%20journal%20of%20impact%20engineering&rft.au=Jamil,%20A.&rft.date=2019-05-01&rft.volume=127&rft.spage=31&rft.epage=40&rft.pages=31-40&rft.issn=0734-743X&rft.eissn=1879-3509&rft_id=info:doi/10.1016/j.ijimpeng.2019.01.003&rft_dat=%3Cproquest_cross%3E2187918849%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187918849&rft_id=info:pmid/&rft_els_id=S0734743X17306437&rfr_iscdi=true