Heat transfer and pressure drop in microchannels with isotropically etched pillars at sub-ambient temperatures

•Temperature- and pressure-dependent flow behavior of nitrogen gas in microchannels with isotropically etched pillars was studied.•Staggered pillar arrays provided a higher Nusselt number than aligned pillar arrays.•Correlations for the Nusselt number and friction factor as a function of Reynolds an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of refrigeration 2019-02, Vol.98, p.334-342
Hauptverfasser: Cao, H.S., Vanapalli, S., Holland, H.J., Vermeer, C.H., ter Brake, H.J.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 342
container_issue
container_start_page 334
container_title International journal of refrigeration
container_volume 98
creator Cao, H.S.
Vanapalli, S.
Holland, H.J.
Vermeer, C.H.
ter Brake, H.J.M.
description •Temperature- and pressure-dependent flow behavior of nitrogen gas in microchannels with isotropically etched pillars was studied.•Staggered pillar arrays provided a higher Nusselt number than aligned pillar arrays.•Correlations for the Nusselt number and friction factor as a function of Reynolds and Prandtl number were developed.•Correlations were validated by using Joule-Thomson microcoolers as test platforms. Glass microfluidic devices are often manufactured using micromachining techniques that involve the use of wet etching. In applications where high-pressure fluids are used, the microchannels in the microchip are filled with pillar structures for mechanical strength. Owing to the isotropic nature of the wet etching process, the pillars resulting from this process are shaped as truncated cones. In this paper, we present the results of a numerical study for predicting the flow and the heat transfer characteristics in a microchannel with truncated cone-shaped pillar arrays at sub-ambient temperatures. In order to verify the developed correlations, we use Joule-Thomson microcoolers that contain a counter-flow heat exchanger (CFHX) as test platforms and operate these with nitrogen gas. The performance of the microcoolers predicted with the new correlations matches well with the experimental data. Using these correlations, the CFHX is optimized and the CFHX losses are reduced by more than 30%.
doi_str_mv 10.1016/j.ijrefrig.2018.10.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2187912354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014070071830389X</els_id><sourcerecordid>2187912354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-bf571d63d6ca318da566fcfccf6aac677ad0343aae8d7f066b26a12e5f44b01f3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_QQKet072I7velKJWKHjRc5hNJjbLdndNUqX_3pTq2dPAzLzPMA9j1wIWAoS87Rau82S9-1jkIJrUXABUJ2wmmvouy6ERp2wGooSsBqjP2UUIHYCooWpmbFgRRh49DsGS5zgYPnkKYeeJGz9O3A1867Qf9QaHgfrAv13ccBfGmKZOY9_vOUW9oRR0fY8-8AQMuzbDbetoSHDaTuQxJmS4ZGcW-0BXv3XO3p8e35arbP36_LJ8WGe6aJqYtbaqhZGFkRoL0RispLTaam0lopZ1jQaKskCkxtQWpGxziSKnypZlC8IWc3Zz5E5-_NxRiKobd35IJ1V-0CLyoirTljxupf9CSA7V5N0W_V4JUAe3qlN_btXB7aGf3Kbg_TGYhNCXI6-CTr9qMs6TjsqM7j_EDxGTiXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187912354</pqid></control><display><type>article</type><title>Heat transfer and pressure drop in microchannels with isotropically etched pillars at sub-ambient temperatures</title><source>Elsevier ScienceDirect Journals</source><creator>Cao, H.S. ; Vanapalli, S. ; Holland, H.J. ; Vermeer, C.H. ; ter Brake, H.J.M.</creator><creatorcontrib>Cao, H.S. ; Vanapalli, S. ; Holland, H.J. ; Vermeer, C.H. ; ter Brake, H.J.M.</creatorcontrib><description>•Temperature- and pressure-dependent flow behavior of nitrogen gas in microchannels with isotropically etched pillars was studied.•Staggered pillar arrays provided a higher Nusselt number than aligned pillar arrays.•Correlations for the Nusselt number and friction factor as a function of Reynolds and Prandtl number were developed.•Correlations were validated by using Joule-Thomson microcoolers as test platforms. Glass microfluidic devices are often manufactured using micromachining techniques that involve the use of wet etching. In applications where high-pressure fluids are used, the microchannels in the microchip are filled with pillar structures for mechanical strength. Owing to the isotropic nature of the wet etching process, the pillars resulting from this process are shaped as truncated cones. In this paper, we present the results of a numerical study for predicting the flow and the heat transfer characteristics in a microchannel with truncated cone-shaped pillar arrays at sub-ambient temperatures. In order to verify the developed correlations, we use Joule-Thomson microcoolers that contain a counter-flow heat exchanger (CFHX) as test platforms and operate these with nitrogen gas. The performance of the microcoolers predicted with the new correlations matches well with the experimental data. Using these correlations, the CFHX is optimized and the CFHX losses are reduced by more than 30%.</description><identifier>ISSN: 0140-7007</identifier><identifier>EISSN: 1879-2081</identifier><identifier>DOI: 10.1016/j.ijrefrig.2018.10.005</identifier><language>eng</language><publisher>Paris: Elsevier B.V</publisher><subject>Ambient temperature ; Chute de pression ; Colonnes ; Computational fluid dynamics ; Cones ; Correlation ; Etching ; Gravure isotrope ; Heat exchangers ; Heat transfer ; Isotropic etching ; Microcanal ; Microchannel ; Microchannels ; Microfluidic devices ; Micromachining ; Numerical prediction ; Pillars ; Pressure ; Pressure drop ; Temperature ; Transfert de chaleur</subject><ispartof>International journal of refrigeration, 2019-02, Vol.98, p.334-342</ispartof><rights>2018 Elsevier Ltd and IIR</rights><rights>Copyright Elsevier Science Ltd. Feb 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-bf571d63d6ca318da566fcfccf6aac677ad0343aae8d7f066b26a12e5f44b01f3</citedby><cites>FETCH-LOGICAL-c388t-bf571d63d6ca318da566fcfccf6aac677ad0343aae8d7f066b26a12e5f44b01f3</cites><orcidid>0000-0002-3307-3017 ; 0000-0002-4873-1262</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijrefrig.2018.10.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Cao, H.S.</creatorcontrib><creatorcontrib>Vanapalli, S.</creatorcontrib><creatorcontrib>Holland, H.J.</creatorcontrib><creatorcontrib>Vermeer, C.H.</creatorcontrib><creatorcontrib>ter Brake, H.J.M.</creatorcontrib><title>Heat transfer and pressure drop in microchannels with isotropically etched pillars at sub-ambient temperatures</title><title>International journal of refrigeration</title><description>•Temperature- and pressure-dependent flow behavior of nitrogen gas in microchannels with isotropically etched pillars was studied.•Staggered pillar arrays provided a higher Nusselt number than aligned pillar arrays.•Correlations for the Nusselt number and friction factor as a function of Reynolds and Prandtl number were developed.•Correlations were validated by using Joule-Thomson microcoolers as test platforms. Glass microfluidic devices are often manufactured using micromachining techniques that involve the use of wet etching. In applications where high-pressure fluids are used, the microchannels in the microchip are filled with pillar structures for mechanical strength. Owing to the isotropic nature of the wet etching process, the pillars resulting from this process are shaped as truncated cones. In this paper, we present the results of a numerical study for predicting the flow and the heat transfer characteristics in a microchannel with truncated cone-shaped pillar arrays at sub-ambient temperatures. In order to verify the developed correlations, we use Joule-Thomson microcoolers that contain a counter-flow heat exchanger (CFHX) as test platforms and operate these with nitrogen gas. The performance of the microcoolers predicted with the new correlations matches well with the experimental data. Using these correlations, the CFHX is optimized and the CFHX losses are reduced by more than 30%.</description><subject>Ambient temperature</subject><subject>Chute de pression</subject><subject>Colonnes</subject><subject>Computational fluid dynamics</subject><subject>Cones</subject><subject>Correlation</subject><subject>Etching</subject><subject>Gravure isotrope</subject><subject>Heat exchangers</subject><subject>Heat transfer</subject><subject>Isotropic etching</subject><subject>Microcanal</subject><subject>Microchannel</subject><subject>Microchannels</subject><subject>Microfluidic devices</subject><subject>Micromachining</subject><subject>Numerical prediction</subject><subject>Pillars</subject><subject>Pressure</subject><subject>Pressure drop</subject><subject>Temperature</subject><subject>Transfert de chaleur</subject><issn>0140-7007</issn><issn>1879-2081</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKt_QQKet072I7velKJWKHjRc5hNJjbLdndNUqX_3pTq2dPAzLzPMA9j1wIWAoS87Rau82S9-1jkIJrUXABUJ2wmmvouy6ERp2wGooSsBqjP2UUIHYCooWpmbFgRRh49DsGS5zgYPnkKYeeJGz9O3A1867Qf9QaHgfrAv13ccBfGmKZOY9_vOUW9oRR0fY8-8AQMuzbDbetoSHDaTuQxJmS4ZGcW-0BXv3XO3p8e35arbP36_LJ8WGe6aJqYtbaqhZGFkRoL0RispLTaam0lopZ1jQaKskCkxtQWpGxziSKnypZlC8IWc3Zz5E5-_NxRiKobd35IJ1V-0CLyoirTljxupf9CSA7V5N0W_V4JUAe3qlN_btXB7aGf3Kbg_TGYhNCXI6-CTr9qMs6TjsqM7j_EDxGTiXA</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Cao, H.S.</creator><creator>Vanapalli, S.</creator><creator>Holland, H.J.</creator><creator>Vermeer, C.H.</creator><creator>ter Brake, H.J.M.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-3307-3017</orcidid><orcidid>https://orcid.org/0000-0002-4873-1262</orcidid></search><sort><creationdate>201902</creationdate><title>Heat transfer and pressure drop in microchannels with isotropically etched pillars at sub-ambient temperatures</title><author>Cao, H.S. ; Vanapalli, S. ; Holland, H.J. ; Vermeer, C.H. ; ter Brake, H.J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-bf571d63d6ca318da566fcfccf6aac677ad0343aae8d7f066b26a12e5f44b01f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ambient temperature</topic><topic>Chute de pression</topic><topic>Colonnes</topic><topic>Computational fluid dynamics</topic><topic>Cones</topic><topic>Correlation</topic><topic>Etching</topic><topic>Gravure isotrope</topic><topic>Heat exchangers</topic><topic>Heat transfer</topic><topic>Isotropic etching</topic><topic>Microcanal</topic><topic>Microchannel</topic><topic>Microchannels</topic><topic>Microfluidic devices</topic><topic>Micromachining</topic><topic>Numerical prediction</topic><topic>Pillars</topic><topic>Pressure</topic><topic>Pressure drop</topic><topic>Temperature</topic><topic>Transfert de chaleur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, H.S.</creatorcontrib><creatorcontrib>Vanapalli, S.</creatorcontrib><creatorcontrib>Holland, H.J.</creatorcontrib><creatorcontrib>Vermeer, C.H.</creatorcontrib><creatorcontrib>ter Brake, H.J.M.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>International journal of refrigeration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, H.S.</au><au>Vanapalli, S.</au><au>Holland, H.J.</au><au>Vermeer, C.H.</au><au>ter Brake, H.J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat transfer and pressure drop in microchannels with isotropically etched pillars at sub-ambient temperatures</atitle><jtitle>International journal of refrigeration</jtitle><date>2019-02</date><risdate>2019</risdate><volume>98</volume><spage>334</spage><epage>342</epage><pages>334-342</pages><issn>0140-7007</issn><eissn>1879-2081</eissn><abstract>•Temperature- and pressure-dependent flow behavior of nitrogen gas in microchannels with isotropically etched pillars was studied.•Staggered pillar arrays provided a higher Nusselt number than aligned pillar arrays.•Correlations for the Nusselt number and friction factor as a function of Reynolds and Prandtl number were developed.•Correlations were validated by using Joule-Thomson microcoolers as test platforms. Glass microfluidic devices are often manufactured using micromachining techniques that involve the use of wet etching. In applications where high-pressure fluids are used, the microchannels in the microchip are filled with pillar structures for mechanical strength. Owing to the isotropic nature of the wet etching process, the pillars resulting from this process are shaped as truncated cones. In this paper, we present the results of a numerical study for predicting the flow and the heat transfer characteristics in a microchannel with truncated cone-shaped pillar arrays at sub-ambient temperatures. In order to verify the developed correlations, we use Joule-Thomson microcoolers that contain a counter-flow heat exchanger (CFHX) as test platforms and operate these with nitrogen gas. The performance of the microcoolers predicted with the new correlations matches well with the experimental data. Using these correlations, the CFHX is optimized and the CFHX losses are reduced by more than 30%.</abstract><cop>Paris</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ijrefrig.2018.10.005</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3307-3017</orcidid><orcidid>https://orcid.org/0000-0002-4873-1262</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0140-7007
ispartof International journal of refrigeration, 2019-02, Vol.98, p.334-342
issn 0140-7007
1879-2081
language eng
recordid cdi_proquest_journals_2187912354
source Elsevier ScienceDirect Journals
subjects Ambient temperature
Chute de pression
Colonnes
Computational fluid dynamics
Cones
Correlation
Etching
Gravure isotrope
Heat exchangers
Heat transfer
Isotropic etching
Microcanal
Microchannel
Microchannels
Microfluidic devices
Micromachining
Numerical prediction
Pillars
Pressure
Pressure drop
Temperature
Transfert de chaleur
title Heat transfer and pressure drop in microchannels with isotropically etched pillars at sub-ambient temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T20%3A32%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%20transfer%20and%20pressure%20drop%20in%20microchannels%20with%20isotropically%20etched%20pillars%20at%20sub-ambient%20temperatures&rft.jtitle=International%20journal%20of%20refrigeration&rft.au=Cao,%20H.S.&rft.date=2019-02&rft.volume=98&rft.spage=334&rft.epage=342&rft.pages=334-342&rft.issn=0140-7007&rft.eissn=1879-2081&rft_id=info:doi/10.1016/j.ijrefrig.2018.10.005&rft_dat=%3Cproquest_cross%3E2187912354%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187912354&rft_id=info:pmid/&rft_els_id=S014070071830389X&rfr_iscdi=true