When can the local advection–dispersion equation simulate non-Fickian transport through rough fractures?

Non-Fickian solute transport is observed across many scales, which has motivated development of numerous non-Fickian-based models. Assuming that local fluid flow was estimable from the Modified Local Cubic Law, this study determined whether the local ADE better simulated non-Fickian transport throug...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastic environmental research and risk assessment 2019-03, Vol.33 (3), p.931-938
Hauptverfasser: Zheng, Lizhi, Wang, Lichun, James, Scott C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 938
container_issue 3
container_start_page 931
container_title Stochastic environmental research and risk assessment
container_volume 33
creator Zheng, Lizhi
Wang, Lichun
James, Scott C.
description Non-Fickian solute transport is observed across many scales, which has motivated development of numerous non-Fickian-based models. Assuming that local fluid flow was estimable from the Modified Local Cubic Law, this study determined whether the local ADE better simulated non-Fickian transport through rough (3-D) fractures when local dispersion was described using either  the Taylor dispersion coefficient ( D Taylor ) or the molecular diffusion coefficient ( D m ). The assessment was based on how well the local ADE compared to particle-tracking solutions for solute transport across a range of Péclét numbers ( Pe ) through two simulated fractures. Even though the local ADE is based on local Fickian transport processes, it was able to reproduce non-Fickian transport characteristics through these heterogeneous fractures. When supplying D Taylor to the local ADE, it extended the applicability of the local ADE to a threshold of Pe  
doi_str_mv 10.1007/s00477-019-01661-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2187706307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187706307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6b7235a82a976e0585a21463629e5ab87826fa4d849cf05a4f8e1eed603b7de33</originalsourceid><addsrcrecordid>eNp9kM9KxDAQxoMouOi-gKeC52r-tElzEllcFRa8KB5Dmk53u3aTbtIK3nwH39AnMbWiNw-ZzAzf7xv4EDoj-IJgLC4DxpkQKSYyPs5JKg7QjGSMp4zm8vC3z_AxmofQlBHKmZQEz9D2eQM2Mdom_QaS1hndJrp6BdM3zn6-f1RN6MCHOCSwH_S4TUKzG1rdQ2KdTZeNeWlG3GsbOuf7aOTdsN4kU629Nv3gIVydoqNatwHmP_8JelrePC7u0tXD7f3iepUaRmSf8lJQluuCaik44LzINSUZZ5xKyHVZiILyWmdVkUlT41xndQEEoOKYlaICxk7Q-eTbebcfIPRq6wZv40lFSSEE5gyLqKKTyngXgodadb7Zaf-mCFZjrGqKVcVY1XesaoTYBIUotmvwf9b_UF-GAH0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187706307</pqid></control><display><type>article</type><title>When can the local advection–dispersion equation simulate non-Fickian transport through rough fractures?</title><source>Springer Online Journals Complete</source><creator>Zheng, Lizhi ; Wang, Lichun ; James, Scott C.</creator><creatorcontrib>Zheng, Lizhi ; Wang, Lichun ; James, Scott C.</creatorcontrib><description>Non-Fickian solute transport is observed across many scales, which has motivated development of numerous non-Fickian-based models. Assuming that local fluid flow was estimable from the Modified Local Cubic Law, this study determined whether the local ADE better simulated non-Fickian transport through rough (3-D) fractures when local dispersion was described using either  the Taylor dispersion coefficient ( D Taylor ) or the molecular diffusion coefficient ( D m ). The assessment was based on how well the local ADE compared to particle-tracking solutions for solute transport across a range of Péclét numbers ( Pe ) through two simulated fractures. Even though the local ADE is based on local Fickian transport processes, it was able to reproduce non-Fickian transport characteristics through these heterogeneous fractures. When supplying D Taylor to the local ADE, it extended the applicability of the local ADE to a threshold of Pe  &lt; 450; using D m , the local ADE was only accurate when Pe  &lt; 70. No differences were observed for small Pe . Therefore, our recommendation is to always use D Taylor in the local ADE to capture non-Fickian transport so long as the Pe threshold is not exceeded.</description><identifier>ISSN: 1436-3240</identifier><identifier>EISSN: 1436-3259</identifier><identifier>DOI: 10.1007/s00477-019-01661-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic Pollution ; Chemistry and Earth Sciences ; Computational fluid dynamics ; Computational Intelligence ; Computer Science ; Computer simulation ; Diffusion coefficient ; Earth and Environmental Science ; Earth Sciences ; Environment ; Fluid flow ; Fractures ; Math. Appl. in Environmental Science ; Molecular diffusion ; Original Paper ; Physics ; Probability Theory and Stochastic Processes ; Solute transport ; Statistics for Engineering ; Transport processes ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Stochastic environmental research and risk assessment, 2019-03, Vol.33 (3), p.931-938</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Stochastic Environmental Research and Risk Assessment is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6b7235a82a976e0585a21463629e5ab87826fa4d849cf05a4f8e1eed603b7de33</citedby><cites>FETCH-LOGICAL-c319t-6b7235a82a976e0585a21463629e5ab87826fa4d849cf05a4f8e1eed603b7de33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00477-019-01661-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00477-019-01661-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Zheng, Lizhi</creatorcontrib><creatorcontrib>Wang, Lichun</creatorcontrib><creatorcontrib>James, Scott C.</creatorcontrib><title>When can the local advection–dispersion equation simulate non-Fickian transport through rough fractures?</title><title>Stochastic environmental research and risk assessment</title><addtitle>Stoch Environ Res Risk Assess</addtitle><description>Non-Fickian solute transport is observed across many scales, which has motivated development of numerous non-Fickian-based models. Assuming that local fluid flow was estimable from the Modified Local Cubic Law, this study determined whether the local ADE better simulated non-Fickian transport through rough (3-D) fractures when local dispersion was described using either  the Taylor dispersion coefficient ( D Taylor ) or the molecular diffusion coefficient ( D m ). The assessment was based on how well the local ADE compared to particle-tracking solutions for solute transport across a range of Péclét numbers ( Pe ) through two simulated fractures. Even though the local ADE is based on local Fickian transport processes, it was able to reproduce non-Fickian transport characteristics through these heterogeneous fractures. When supplying D Taylor to the local ADE, it extended the applicability of the local ADE to a threshold of Pe  &lt; 450; using D m , the local ADE was only accurate when Pe  &lt; 70. No differences were observed for small Pe . Therefore, our recommendation is to always use D Taylor in the local ADE to capture non-Fickian transport so long as the Pe threshold is not exceeded.</description><subject>Aquatic Pollution</subject><subject>Chemistry and Earth Sciences</subject><subject>Computational fluid dynamics</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Computer simulation</subject><subject>Diffusion coefficient</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environment</subject><subject>Fluid flow</subject><subject>Fractures</subject><subject>Math. Appl. in Environmental Science</subject><subject>Molecular diffusion</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Solute transport</subject><subject>Statistics for Engineering</subject><subject>Transport processes</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>1436-3240</issn><issn>1436-3259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM9KxDAQxoMouOi-gKeC52r-tElzEllcFRa8KB5Dmk53u3aTbtIK3nwH39AnMbWiNw-ZzAzf7xv4EDoj-IJgLC4DxpkQKSYyPs5JKg7QjGSMp4zm8vC3z_AxmofQlBHKmZQEz9D2eQM2Mdom_QaS1hndJrp6BdM3zn6-f1RN6MCHOCSwH_S4TUKzG1rdQ2KdTZeNeWlG3GsbOuf7aOTdsN4kU629Nv3gIVydoqNatwHmP_8JelrePC7u0tXD7f3iepUaRmSf8lJQluuCaik44LzINSUZZ5xKyHVZiILyWmdVkUlT41xndQEEoOKYlaICxk7Q-eTbebcfIPRq6wZv40lFSSEE5gyLqKKTyngXgodadb7Zaf-mCFZjrGqKVcVY1XesaoTYBIUotmvwf9b_UF-GAH0M</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Zheng, Lizhi</creator><creator>Wang, Lichun</creator><creator>James, Scott C.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>SOI</scope></search><sort><creationdate>20190301</creationdate><title>When can the local advection–dispersion equation simulate non-Fickian transport through rough fractures?</title><author>Zheng, Lizhi ; Wang, Lichun ; James, Scott C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6b7235a82a976e0585a21463629e5ab87826fa4d849cf05a4f8e1eed603b7de33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aquatic Pollution</topic><topic>Chemistry and Earth Sciences</topic><topic>Computational fluid dynamics</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Computer simulation</topic><topic>Diffusion coefficient</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environment</topic><topic>Fluid flow</topic><topic>Fractures</topic><topic>Math. Appl. in Environmental Science</topic><topic>Molecular diffusion</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Solute transport</topic><topic>Statistics for Engineering</topic><topic>Transport processes</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Lizhi</creatorcontrib><creatorcontrib>Wang, Lichun</creatorcontrib><creatorcontrib>James, Scott C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Environment Abstracts</collection><jtitle>Stochastic environmental research and risk assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Lizhi</au><au>Wang, Lichun</au><au>James, Scott C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>When can the local advection–dispersion equation simulate non-Fickian transport through rough fractures?</atitle><jtitle>Stochastic environmental research and risk assessment</jtitle><stitle>Stoch Environ Res Risk Assess</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>33</volume><issue>3</issue><spage>931</spage><epage>938</epage><pages>931-938</pages><issn>1436-3240</issn><eissn>1436-3259</eissn><abstract>Non-Fickian solute transport is observed across many scales, which has motivated development of numerous non-Fickian-based models. Assuming that local fluid flow was estimable from the Modified Local Cubic Law, this study determined whether the local ADE better simulated non-Fickian transport through rough (3-D) fractures when local dispersion was described using either  the Taylor dispersion coefficient ( D Taylor ) or the molecular diffusion coefficient ( D m ). The assessment was based on how well the local ADE compared to particle-tracking solutions for solute transport across a range of Péclét numbers ( Pe ) through two simulated fractures. Even though the local ADE is based on local Fickian transport processes, it was able to reproduce non-Fickian transport characteristics through these heterogeneous fractures. When supplying D Taylor to the local ADE, it extended the applicability of the local ADE to a threshold of Pe  &lt; 450; using D m , the local ADE was only accurate when Pe  &lt; 70. No differences were observed for small Pe . Therefore, our recommendation is to always use D Taylor in the local ADE to capture non-Fickian transport so long as the Pe threshold is not exceeded.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00477-019-01661-7</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1436-3240
ispartof Stochastic environmental research and risk assessment, 2019-03, Vol.33 (3), p.931-938
issn 1436-3240
1436-3259
language eng
recordid cdi_proquest_journals_2187706307
source Springer Online Journals Complete
subjects Aquatic Pollution
Chemistry and Earth Sciences
Computational fluid dynamics
Computational Intelligence
Computer Science
Computer simulation
Diffusion coefficient
Earth and Environmental Science
Earth Sciences
Environment
Fluid flow
Fractures
Math. Appl. in Environmental Science
Molecular diffusion
Original Paper
Physics
Probability Theory and Stochastic Processes
Solute transport
Statistics for Engineering
Transport processes
Waste Water Technology
Water Management
Water Pollution Control
title When can the local advection–dispersion equation simulate non-Fickian transport through rough fractures?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T06%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=When%20can%20the%20local%20advection%E2%80%93dispersion%20equation%20simulate%20non-Fickian%20transport%20through%20rough%20fractures?&rft.jtitle=Stochastic%20environmental%20research%20and%20risk%20assessment&rft.au=Zheng,%20Lizhi&rft.date=2019-03-01&rft.volume=33&rft.issue=3&rft.spage=931&rft.epage=938&rft.pages=931-938&rft.issn=1436-3240&rft.eissn=1436-3259&rft_id=info:doi/10.1007/s00477-019-01661-7&rft_dat=%3Cproquest_cross%3E2187706307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187706307&rft_id=info:pmid/&rfr_iscdi=true