Synthesis of special acrylic nanofibers as an appropriate precursor for conductive carbon nanofibers

Electrospinning technique is a significant approach used for producing special acrylic nanofibers (SANFs) through applying electrostatic field. SANFs were electrospun from polyacrylonitrile (PAN) copolymer solutions to be used as a precursor for carbon nanofibers (CNFs). The Box–Benkhen design (BBD)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2019-04, Vol.30 (7), p.7005-7017
Hauptverfasser: Nasouri, Komeil, Mousavi Shoushtari, Ahmad, Namazi, Fariba
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7017
container_issue 7
container_start_page 7005
container_title Journal of materials science. Materials in electronics
container_volume 30
creator Nasouri, Komeil
Mousavi Shoushtari, Ahmad
Namazi, Fariba
description Electrospinning technique is a significant approach used for producing special acrylic nanofibers (SANFs) through applying electrostatic field. SANFs were electrospun from polyacrylonitrile (PAN) copolymer solutions to be used as a precursor for carbon nanofibers (CNFs). The Box–Benkhen design (BBD) was used to elucidate the effects of the acrylic concentration (wt%), electrospinning voltage (kV), and spinning distance (cm) on the SANFs surface morphology and optimize these parameters. Based on BBD model the optimum SANFs diameter of 292 nm and 14.20% coefficient of variation, were collected at 9.3 wt% PAN concentration, 14 kV applied voltage, and 20 cm spinning distance. The optimized SANFs manufactured under BBD settings were specified by scanning electron microscope (SEM), mechanical tester, and differential scanning calorimeter (DSC). The optimized SANFs was stabilized in air and then carbonized in inert atmosphere at 800, 1000, and 1200 °C, respectively. The electrical conductivity of CNFs samples obtained from SANFs at 800 °C carbonization temperature is 2.31 × 10 −2  S/cm, which is increased to 2.60 × 10 +1  S/cm at 1200 °C. The results indicated that, the optimized SANFs possessed the most desired morphological properties, mechanical characteristics, and thermal stability; and thus they are appropriate for the development of high-performance CNFs.
doi_str_mv 10.1007/s10854-019-01018-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2187706047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187706047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-32eae11084dff3adc622cbd8c69f4205a03cee3bc0ad7f9bfdf3411241ed7be33</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoHPAU8V18-2rRHWfyCBQ8qeAtp8qJd1qYmrbD_3mgFPQlveJeZeW-GkFMG5wxAXSQGdSkLYE0GsLqQe2TBSiUKWfPnfbKAplSFLDk_JEcpbQCgkqJeEPew68dXTF2iwdM0oO3Mlhobd9vO0t70wXctxkRNnp6aYYhhiJ0ZkQ4R7RRTiNRn2NC7yY7dB1JrYhv6P-JjcuDNNuHJz16Sp-urx9Vtsb6_uVtdrgsrWDMWgqNBlpNI570wzlac29bVtmq85FAaEBZRtBaMU75pvfNCMsYlQ6daFGJJzmbf_OT7hGnUmzDFPp_UnNVKQQVSZRafWTaGlCJ6nQO9mbjTDPRXm3puU-c29XebWmaRmEUpk_sXjL_W_6g-ARGHeqs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187706047</pqid></control><display><type>article</type><title>Synthesis of special acrylic nanofibers as an appropriate precursor for conductive carbon nanofibers</title><source>SpringerLink (Online service)</source><creator>Nasouri, Komeil ; Mousavi Shoushtari, Ahmad ; Namazi, Fariba</creator><creatorcontrib>Nasouri, Komeil ; Mousavi Shoushtari, Ahmad ; Namazi, Fariba</creatorcontrib><description>Electrospinning technique is a significant approach used for producing special acrylic nanofibers (SANFs) through applying electrostatic field. SANFs were electrospun from polyacrylonitrile (PAN) copolymer solutions to be used as a precursor for carbon nanofibers (CNFs). The Box–Benkhen design (BBD) was used to elucidate the effects of the acrylic concentration (wt%), electrospinning voltage (kV), and spinning distance (cm) on the SANFs surface morphology and optimize these parameters. Based on BBD model the optimum SANFs diameter of 292 nm and 14.20% coefficient of variation, were collected at 9.3 wt% PAN concentration, 14 kV applied voltage, and 20 cm spinning distance. The optimized SANFs manufactured under BBD settings were specified by scanning electron microscope (SEM), mechanical tester, and differential scanning calorimeter (DSC). The optimized SANFs was stabilized in air and then carbonized in inert atmosphere at 800, 1000, and 1200 °C, respectively. The electrical conductivity of CNFs samples obtained from SANFs at 800 °C carbonization temperature is 2.31 × 10 −2  S/cm, which is increased to 2.60 × 10 +1  S/cm at 1200 °C. The results indicated that, the optimized SANFs possessed the most desired morphological properties, mechanical characteristics, and thermal stability; and thus they are appropriate for the development of high-performance CNFs.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-019-01018-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carbon fibers ; Carbonization ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Coefficient of variation ; Electric fields ; Electric potential ; Electrical resistivity ; Electrospinning ; Inert atmospheres ; Materials Science ; Mechanical properties ; Morphology ; Nanofibers ; Optical and Electronic Materials ; Optimization ; Polyacrylonitrile ; Precursors ; Thermal stability</subject><ispartof>Journal of materials science. Materials in electronics, 2019-04, Vol.30 (7), p.7005-7017</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-32eae11084dff3adc622cbd8c69f4205a03cee3bc0ad7f9bfdf3411241ed7be33</citedby><cites>FETCH-LOGICAL-c319t-32eae11084dff3adc622cbd8c69f4205a03cee3bc0ad7f9bfdf3411241ed7be33</cites><orcidid>0000-0001-5177-2631</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-019-01018-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-019-01018-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Nasouri, Komeil</creatorcontrib><creatorcontrib>Mousavi Shoushtari, Ahmad</creatorcontrib><creatorcontrib>Namazi, Fariba</creatorcontrib><title>Synthesis of special acrylic nanofibers as an appropriate precursor for conductive carbon nanofibers</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Electrospinning technique is a significant approach used for producing special acrylic nanofibers (SANFs) through applying electrostatic field. SANFs were electrospun from polyacrylonitrile (PAN) copolymer solutions to be used as a precursor for carbon nanofibers (CNFs). The Box–Benkhen design (BBD) was used to elucidate the effects of the acrylic concentration (wt%), electrospinning voltage (kV), and spinning distance (cm) on the SANFs surface morphology and optimize these parameters. Based on BBD model the optimum SANFs diameter of 292 nm and 14.20% coefficient of variation, were collected at 9.3 wt% PAN concentration, 14 kV applied voltage, and 20 cm spinning distance. The optimized SANFs manufactured under BBD settings were specified by scanning electron microscope (SEM), mechanical tester, and differential scanning calorimeter (DSC). The optimized SANFs was stabilized in air and then carbonized in inert atmosphere at 800, 1000, and 1200 °C, respectively. The electrical conductivity of CNFs samples obtained from SANFs at 800 °C carbonization temperature is 2.31 × 10 −2  S/cm, which is increased to 2.60 × 10 +1  S/cm at 1200 °C. The results indicated that, the optimized SANFs possessed the most desired morphological properties, mechanical characteristics, and thermal stability; and thus they are appropriate for the development of high-performance CNFs.</description><subject>Carbon fibers</subject><subject>Carbonization</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Coefficient of variation</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Electrical resistivity</subject><subject>Electrospinning</subject><subject>Inert atmospheres</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>Nanofibers</subject><subject>Optical and Electronic Materials</subject><subject>Optimization</subject><subject>Polyacrylonitrile</subject><subject>Precursors</subject><subject>Thermal stability</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UE1LxDAUDKLguvoHPAU8V18-2rRHWfyCBQ8qeAtp8qJd1qYmrbD_3mgFPQlveJeZeW-GkFMG5wxAXSQGdSkLYE0GsLqQe2TBSiUKWfPnfbKAplSFLDk_JEcpbQCgkqJeEPew68dXTF2iwdM0oO3Mlhobd9vO0t70wXctxkRNnp6aYYhhiJ0ZkQ4R7RRTiNRn2NC7yY7dB1JrYhv6P-JjcuDNNuHJz16Sp-urx9Vtsb6_uVtdrgsrWDMWgqNBlpNI570wzlac29bVtmq85FAaEBZRtBaMU75pvfNCMsYlQ6daFGJJzmbf_OT7hGnUmzDFPp_UnNVKQQVSZRafWTaGlCJ6nQO9mbjTDPRXm3puU-c29XebWmaRmEUpk_sXjL_W_6g-ARGHeqs</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Nasouri, Komeil</creator><creator>Mousavi Shoushtari, Ahmad</creator><creator>Namazi, Fariba</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-5177-2631</orcidid></search><sort><creationdate>20190401</creationdate><title>Synthesis of special acrylic nanofibers as an appropriate precursor for conductive carbon nanofibers</title><author>Nasouri, Komeil ; Mousavi Shoushtari, Ahmad ; Namazi, Fariba</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-32eae11084dff3adc622cbd8c69f4205a03cee3bc0ad7f9bfdf3411241ed7be33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon fibers</topic><topic>Carbonization</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Coefficient of variation</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Electrical resistivity</topic><topic>Electrospinning</topic><topic>Inert atmospheres</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>Nanofibers</topic><topic>Optical and Electronic Materials</topic><topic>Optimization</topic><topic>Polyacrylonitrile</topic><topic>Precursors</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nasouri, Komeil</creatorcontrib><creatorcontrib>Mousavi Shoushtari, Ahmad</creatorcontrib><creatorcontrib>Namazi, Fariba</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nasouri, Komeil</au><au>Mousavi Shoushtari, Ahmad</au><au>Namazi, Fariba</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of special acrylic nanofibers as an appropriate precursor for conductive carbon nanofibers</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>30</volume><issue>7</issue><spage>7005</spage><epage>7017</epage><pages>7005-7017</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Electrospinning technique is a significant approach used for producing special acrylic nanofibers (SANFs) through applying electrostatic field. SANFs were electrospun from polyacrylonitrile (PAN) copolymer solutions to be used as a precursor for carbon nanofibers (CNFs). The Box–Benkhen design (BBD) was used to elucidate the effects of the acrylic concentration (wt%), electrospinning voltage (kV), and spinning distance (cm) on the SANFs surface morphology and optimize these parameters. Based on BBD model the optimum SANFs diameter of 292 nm and 14.20% coefficient of variation, were collected at 9.3 wt% PAN concentration, 14 kV applied voltage, and 20 cm spinning distance. The optimized SANFs manufactured under BBD settings were specified by scanning electron microscope (SEM), mechanical tester, and differential scanning calorimeter (DSC). The optimized SANFs was stabilized in air and then carbonized in inert atmosphere at 800, 1000, and 1200 °C, respectively. The electrical conductivity of CNFs samples obtained from SANFs at 800 °C carbonization temperature is 2.31 × 10 −2  S/cm, which is increased to 2.60 × 10 +1  S/cm at 1200 °C. The results indicated that, the optimized SANFs possessed the most desired morphological properties, mechanical characteristics, and thermal stability; and thus they are appropriate for the development of high-performance CNFs.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-019-01018-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5177-2631</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2019-04, Vol.30 (7), p.7005-7017
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2187706047
source SpringerLink (Online service)
subjects Carbon fibers
Carbonization
Characterization and Evaluation of Materials
Chemistry and Materials Science
Coefficient of variation
Electric fields
Electric potential
Electrical resistivity
Electrospinning
Inert atmospheres
Materials Science
Mechanical properties
Morphology
Nanofibers
Optical and Electronic Materials
Optimization
Polyacrylonitrile
Precursors
Thermal stability
title Synthesis of special acrylic nanofibers as an appropriate precursor for conductive carbon nanofibers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A26%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20special%20acrylic%20nanofibers%20as%20an%20appropriate%20precursor%20for%20conductive%20carbon%20nanofibers&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Nasouri,%20Komeil&rft.date=2019-04-01&rft.volume=30&rft.issue=7&rft.spage=7005&rft.epage=7017&rft.pages=7005-7017&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-019-01018-4&rft_dat=%3Cproquest_cross%3E2187706047%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187706047&rft_id=info:pmid/&rfr_iscdi=true