Robust self-triggered MPC with fast convergence for constrained linear systems
In this paper, a robust self-triggered model predictive control (MPC) scheme is proposed for linear discrete-time systems subject to additive disturbances, state and control constraints. To reduce the amount of computation on controller sides, MPC optimization problems are only solved at certain sam...
Gespeichert in:
Veröffentlicht in: | Journal of the Franklin Institute 2019-02, Vol.356 (3), p.1446-1467 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1467 |
---|---|
container_issue | 3 |
container_start_page | 1446 |
container_title | Journal of the Franklin Institute |
container_volume | 356 |
creator | Dai, L. Yang, F. Qiang, Z. Xia, Y. |
description | In this paper, a robust self-triggered model predictive control (MPC) scheme is proposed for linear discrete-time systems subject to additive disturbances, state and control constraints. To reduce the amount of computation on controller sides, MPC optimization problems are only solved at certain sampling instants which are determined by a novel self-triggering mechanism. The main idea of the self-triggering mechanism is to choose inter-sampling times by guaranteeing a fast decrease in optimal costs. It implies a fast convergence of system states to a compact set where it is ultimately bounded and a reduction of computation times to stabilize the system. Once the state enters a terminal region, the system can be stabilized to a robust invariant set by a state feedback controller. Robust constraint satisfaction is ensured by utilizing the worst-case set-valued predictions of future states in such a way that recursive feasibility is guaranteed for all possible realisations of disturbances. In the case where a priority is given to reducing communication costs rather than improvement in control performance in a neighborhood of the origin, a feedback control law based on nominal state predictions is designed in the terminal region to avoid frequent feedback. Performances of the closed-loop system are demonstrated by a simulation example. |
doi_str_mv | 10.1016/j.jfranklin.2018.12.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2187568797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016003219300018</els_id><sourcerecordid>2187568797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-41fb8fcfa6eba0e407711e9121624d2e2e6aa0175da71d7b9609f2843312b8783</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIlMI3EIlzgtdJ4-RYVbyk8hCCs-Uk6-DQJmXtFvXvcVTEldNqtDOzO8PYJfAEOOTXXdIZ0v3nyvaJ4FAkIBLOyyM2gUKWscjL9JhNeKDGnKfilJ051wUogfMJe3odqq3zkcOViT3ZtkXCJnp8WUTf1n9ERodlPfQ7pBb7GiMz0IidJ237wAxnUVPk9s7j2p2zE6NXDi9-55S93968Le7j5fPdw2K-jOs0S32cgakKUxudY6U5ZlxKACxBQC6yRqDAXOvw4qzREhpZlTkvjSiyNAVRFbJIp-zq4Luh4WuLzqtu2FIfTioRYs_yEF0GljywahqcIzRqQ3ataa-Aq7E81am_8tRYngKhQnlBOT8oMYTYWSTlajvmbyxh7VUz2H89fgD_XHyO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187568797</pqid></control><display><type>article</type><title>Robust self-triggered MPC with fast convergence for constrained linear systems</title><source>Elsevier ScienceDirect Journals</source><creator>Dai, L. ; Yang, F. ; Qiang, Z. ; Xia, Y.</creator><creatorcontrib>Dai, L. ; Yang, F. ; Qiang, Z. ; Xia, Y.</creatorcontrib><description>In this paper, a robust self-triggered model predictive control (MPC) scheme is proposed for linear discrete-time systems subject to additive disturbances, state and control constraints. To reduce the amount of computation on controller sides, MPC optimization problems are only solved at certain sampling instants which are determined by a novel self-triggering mechanism. The main idea of the self-triggering mechanism is to choose inter-sampling times by guaranteeing a fast decrease in optimal costs. It implies a fast convergence of system states to a compact set where it is ultimately bounded and a reduction of computation times to stabilize the system. Once the state enters a terminal region, the system can be stabilized to a robust invariant set by a state feedback controller. Robust constraint satisfaction is ensured by utilizing the worst-case set-valued predictions of future states in such a way that recursive feasibility is guaranteed for all possible realisations of disturbances. In the case where a priority is given to reducing communication costs rather than improvement in control performance in a neighborhood of the origin, a feedback control law based on nominal state predictions is designed in the terminal region to avoid frequent feedback. Performances of the closed-loop system are demonstrated by a simulation example.</description><identifier>ISSN: 0016-0032</identifier><identifier>EISSN: 1879-2693</identifier><identifier>EISSN: 0016-0032</identifier><identifier>DOI: 10.1016/j.jfranklin.2018.12.009</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Closed loop systems ; Computation ; Computer simulation ; Control systems ; Control theory ; Controllers ; Convergence ; Discrete time systems ; Disturbances ; Feedback control ; Feedback control systems ; Linear systems ; Optimization ; Predictive control ; Robust control ; Sampling ; State feedback ; Studies</subject><ispartof>Journal of the Franklin Institute, 2019-02, Vol.356 (3), p.1446-1467</ispartof><rights>2019 The Franklin Institute</rights><rights>Copyright Elsevier Science Ltd. Feb 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-41fb8fcfa6eba0e407711e9121624d2e2e6aa0175da71d7b9609f2843312b8783</citedby><cites>FETCH-LOGICAL-c343t-41fb8fcfa6eba0e407711e9121624d2e2e6aa0175da71d7b9609f2843312b8783</cites><orcidid>0000-0002-2572-2259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016003219300018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Dai, L.</creatorcontrib><creatorcontrib>Yang, F.</creatorcontrib><creatorcontrib>Qiang, Z.</creatorcontrib><creatorcontrib>Xia, Y.</creatorcontrib><title>Robust self-triggered MPC with fast convergence for constrained linear systems</title><title>Journal of the Franklin Institute</title><description>In this paper, a robust self-triggered model predictive control (MPC) scheme is proposed for linear discrete-time systems subject to additive disturbances, state and control constraints. To reduce the amount of computation on controller sides, MPC optimization problems are only solved at certain sampling instants which are determined by a novel self-triggering mechanism. The main idea of the self-triggering mechanism is to choose inter-sampling times by guaranteeing a fast decrease in optimal costs. It implies a fast convergence of system states to a compact set where it is ultimately bounded and a reduction of computation times to stabilize the system. Once the state enters a terminal region, the system can be stabilized to a robust invariant set by a state feedback controller. Robust constraint satisfaction is ensured by utilizing the worst-case set-valued predictions of future states in such a way that recursive feasibility is guaranteed for all possible realisations of disturbances. In the case where a priority is given to reducing communication costs rather than improvement in control performance in a neighborhood of the origin, a feedback control law based on nominal state predictions is designed in the terminal region to avoid frequent feedback. Performances of the closed-loop system are demonstrated by a simulation example.</description><subject>Closed loop systems</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Convergence</subject><subject>Discrete time systems</subject><subject>Disturbances</subject><subject>Feedback control</subject><subject>Feedback control systems</subject><subject>Linear systems</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Robust control</subject><subject>Sampling</subject><subject>State feedback</subject><subject>Studies</subject><issn>0016-0032</issn><issn>1879-2693</issn><issn>0016-0032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIlMI3EIlzgtdJ4-RYVbyk8hCCs-Uk6-DQJmXtFvXvcVTEldNqtDOzO8PYJfAEOOTXXdIZ0v3nyvaJ4FAkIBLOyyM2gUKWscjL9JhNeKDGnKfilJ051wUogfMJe3odqq3zkcOViT3ZtkXCJnp8WUTf1n9ERodlPfQ7pBb7GiMz0IidJ237wAxnUVPk9s7j2p2zE6NXDi9-55S93968Le7j5fPdw2K-jOs0S32cgakKUxudY6U5ZlxKACxBQC6yRqDAXOvw4qzREhpZlTkvjSiyNAVRFbJIp-zq4Luh4WuLzqtu2FIfTioRYs_yEF0GljywahqcIzRqQ3ataa-Aq7E81am_8tRYngKhQnlBOT8oMYTYWSTlajvmbyxh7VUz2H89fgD_XHyO</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Dai, L.</creator><creator>Yang, F.</creator><creator>Qiang, Z.</creator><creator>Xia, Y.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-2572-2259</orcidid></search><sort><creationdate>201902</creationdate><title>Robust self-triggered MPC with fast convergence for constrained linear systems</title><author>Dai, L. ; Yang, F. ; Qiang, Z. ; Xia, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-41fb8fcfa6eba0e407711e9121624d2e2e6aa0175da71d7b9609f2843312b8783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Closed loop systems</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Convergence</topic><topic>Discrete time systems</topic><topic>Disturbances</topic><topic>Feedback control</topic><topic>Feedback control systems</topic><topic>Linear systems</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Robust control</topic><topic>Sampling</topic><topic>State feedback</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, L.</creatorcontrib><creatorcontrib>Yang, F.</creatorcontrib><creatorcontrib>Qiang, Z.</creatorcontrib><creatorcontrib>Xia, Y.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of the Franklin Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, L.</au><au>Yang, F.</au><au>Qiang, Z.</au><au>Xia, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust self-triggered MPC with fast convergence for constrained linear systems</atitle><jtitle>Journal of the Franklin Institute</jtitle><date>2019-02</date><risdate>2019</risdate><volume>356</volume><issue>3</issue><spage>1446</spage><epage>1467</epage><pages>1446-1467</pages><issn>0016-0032</issn><eissn>1879-2693</eissn><eissn>0016-0032</eissn><abstract>In this paper, a robust self-triggered model predictive control (MPC) scheme is proposed for linear discrete-time systems subject to additive disturbances, state and control constraints. To reduce the amount of computation on controller sides, MPC optimization problems are only solved at certain sampling instants which are determined by a novel self-triggering mechanism. The main idea of the self-triggering mechanism is to choose inter-sampling times by guaranteeing a fast decrease in optimal costs. It implies a fast convergence of system states to a compact set where it is ultimately bounded and a reduction of computation times to stabilize the system. Once the state enters a terminal region, the system can be stabilized to a robust invariant set by a state feedback controller. Robust constraint satisfaction is ensured by utilizing the worst-case set-valued predictions of future states in such a way that recursive feasibility is guaranteed for all possible realisations of disturbances. In the case where a priority is given to reducing communication costs rather than improvement in control performance in a neighborhood of the origin, a feedback control law based on nominal state predictions is designed in the terminal region to avoid frequent feedback. Performances of the closed-loop system are demonstrated by a simulation example.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jfranklin.2018.12.009</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-2572-2259</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-0032 |
ispartof | Journal of the Franklin Institute, 2019-02, Vol.356 (3), p.1446-1467 |
issn | 0016-0032 1879-2693 0016-0032 |
language | eng |
recordid | cdi_proquest_journals_2187568797 |
source | Elsevier ScienceDirect Journals |
subjects | Closed loop systems Computation Computer simulation Control systems Control theory Controllers Convergence Discrete time systems Disturbances Feedback control Feedback control systems Linear systems Optimization Predictive control Robust control Sampling State feedback Studies |
title | Robust self-triggered MPC with fast convergence for constrained linear systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A15%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20self-triggered%20MPC%20with%20fast%20convergence%20for%20constrained%20linear%20systems&rft.jtitle=Journal%20of%20the%20Franklin%20Institute&rft.au=Dai,%20L.&rft.date=2019-02&rft.volume=356&rft.issue=3&rft.spage=1446&rft.epage=1467&rft.pages=1446-1467&rft.issn=0016-0032&rft.eissn=1879-2693&rft_id=info:doi/10.1016/j.jfranklin.2018.12.009&rft_dat=%3Cproquest_cross%3E2187568797%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187568797&rft_id=info:pmid/&rft_els_id=S0016003219300018&rfr_iscdi=true |