A multitime‐steps‐ahead prediction approach for scheduling live migration in cloud data centers

Summary One of the major challenges facing cloud computing is to accurately predict future resource usage to provision data centers for future demands. Cloud resources are constantly in a state of flux, making it difficult for forecasting algorithms to produce accurate predictions for short times sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Software, practice & experience practice & experience, 2019-04, Vol.49 (4), p.617-639
Hauptverfasser: Duggan, M., Shaw, R., Duggan, J., Howley, E., Barrett, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 639
container_issue 4
container_start_page 617
container_title Software, practice & experience
container_volume 49
creator Duggan, M.
Shaw, R.
Duggan, J.
Howley, E.
Barrett, E.
description Summary One of the major challenges facing cloud computing is to accurately predict future resource usage to provision data centers for future demands. Cloud resources are constantly in a state of flux, making it difficult for forecasting algorithms to produce accurate predictions for short times scales (ie, 5 minutes to 1 hour). This motivates the research presented in this paper, which compares nonlinear and linear forecasting methods with a sequence prediction algorithm known as a recurrent neural network to predict CPU utilization and network bandwidth usage for live migration. Experimental results demonstrate that a multitime‐ahead prediction algorithm reduces bandwidth consumption during critical times and improves overall efficiency of a data center.
doi_str_mv 10.1002/spe.2635
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2187372692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187372692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2935-9d255feaa0072117338fd7b669ac9b9d32043679f644a0f0b23358019ce2770d3</originalsourceid><addsrcrecordid>eNp10MtKAzEUBuAgCtYq-AgBN26mniQzk8mylHqBgoIK7kKaZNqUuZnMKN35CD6jT2LaunX1bz7O5UfoksCEANCb0NkJzVl2hEYEBE-Apm_HaATAigTyND1FZyFsAAjJaD5Ceorroepd72r78_UdetuFmGptlcGdt8bp3rUNVl3nW6XXuGw9DnptzVC5ZoUr92Fx7VZe7ZlrsK7awWCjeoW1bXrrwzk6KVUV7MVfjtHr7fxldp8sHu8eZtNFoqlgWSIMzbLSKgXAKSGcsaI0fJnnQmmxFIZRSFnORRm_UFDCkjKWFUCEtpRzMGyMrg5z46nvgw293LSDb-JKSUnBGae5oFFdH5T2bQjelrLzrlZ-KwnIXYUyVih3FUaaHOinq-z2Xyefn-Z7_wsAm3RH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187372692</pqid></control><display><type>article</type><title>A multitime‐steps‐ahead prediction approach for scheduling live migration in cloud data centers</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Duggan, M. ; Shaw, R. ; Duggan, J. ; Howley, E. ; Barrett, E.</creator><creatorcontrib>Duggan, M. ; Shaw, R. ; Duggan, J. ; Howley, E. ; Barrett, E.</creatorcontrib><description>Summary One of the major challenges facing cloud computing is to accurately predict future resource usage to provision data centers for future demands. Cloud resources are constantly in a state of flux, making it difficult for forecasting algorithms to produce accurate predictions for short times scales (ie, 5 minutes to 1 hour). This motivates the research presented in this paper, which compares nonlinear and linear forecasting methods with a sequence prediction algorithm known as a recurrent neural network to predict CPU utilization and network bandwidth usage for live migration. Experimental results demonstrate that a multitime‐ahead prediction algorithm reduces bandwidth consumption during critical times and improves overall efficiency of a data center.</description><identifier>ISSN: 0038-0644</identifier><identifier>EISSN: 1097-024X</identifier><identifier>DOI: 10.1002/spe.2635</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Bandwidths ; Cloud computing ; Computer centers ; CPU ; Data centers ; Forecasting ; network bandwidth ; neural network ; prediction algorithms ; Recurrent neural networks</subject><ispartof>Software, practice &amp; experience, 2019-04, Vol.49 (4), p.617-639</ispartof><rights>2018 John Wiley &amp; Sons, Ltd.</rights><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2935-9d255feaa0072117338fd7b669ac9b9d32043679f644a0f0b23358019ce2770d3</citedby><cites>FETCH-LOGICAL-c2935-9d255feaa0072117338fd7b669ac9b9d32043679f644a0f0b23358019ce2770d3</cites><orcidid>0000-0001-9576-3884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fspe.2635$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fspe.2635$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Duggan, M.</creatorcontrib><creatorcontrib>Shaw, R.</creatorcontrib><creatorcontrib>Duggan, J.</creatorcontrib><creatorcontrib>Howley, E.</creatorcontrib><creatorcontrib>Barrett, E.</creatorcontrib><title>A multitime‐steps‐ahead prediction approach for scheduling live migration in cloud data centers</title><title>Software, practice &amp; experience</title><description>Summary One of the major challenges facing cloud computing is to accurately predict future resource usage to provision data centers for future demands. Cloud resources are constantly in a state of flux, making it difficult for forecasting algorithms to produce accurate predictions for short times scales (ie, 5 minutes to 1 hour). This motivates the research presented in this paper, which compares nonlinear and linear forecasting methods with a sequence prediction algorithm known as a recurrent neural network to predict CPU utilization and network bandwidth usage for live migration. Experimental results demonstrate that a multitime‐ahead prediction algorithm reduces bandwidth consumption during critical times and improves overall efficiency of a data center.</description><subject>Algorithms</subject><subject>Bandwidths</subject><subject>Cloud computing</subject><subject>Computer centers</subject><subject>CPU</subject><subject>Data centers</subject><subject>Forecasting</subject><subject>network bandwidth</subject><subject>neural network</subject><subject>prediction algorithms</subject><subject>Recurrent neural networks</subject><issn>0038-0644</issn><issn>1097-024X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10MtKAzEUBuAgCtYq-AgBN26mniQzk8mylHqBgoIK7kKaZNqUuZnMKN35CD6jT2LaunX1bz7O5UfoksCEANCb0NkJzVl2hEYEBE-Apm_HaATAigTyND1FZyFsAAjJaD5Ceorroepd72r78_UdetuFmGptlcGdt8bp3rUNVl3nW6XXuGw9DnptzVC5ZoUr92Fx7VZe7ZlrsK7awWCjeoW1bXrrwzk6KVUV7MVfjtHr7fxldp8sHu8eZtNFoqlgWSIMzbLSKgXAKSGcsaI0fJnnQmmxFIZRSFnORRm_UFDCkjKWFUCEtpRzMGyMrg5z46nvgw293LSDb-JKSUnBGae5oFFdH5T2bQjelrLzrlZ-KwnIXYUyVih3FUaaHOinq-z2Xyefn-Z7_wsAm3RH</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Duggan, M.</creator><creator>Shaw, R.</creator><creator>Duggan, J.</creator><creator>Howley, E.</creator><creator>Barrett, E.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9576-3884</orcidid></search><sort><creationdate>201904</creationdate><title>A multitime‐steps‐ahead prediction approach for scheduling live migration in cloud data centers</title><author>Duggan, M. ; Shaw, R. ; Duggan, J. ; Howley, E. ; Barrett, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2935-9d255feaa0072117338fd7b669ac9b9d32043679f644a0f0b23358019ce2770d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Bandwidths</topic><topic>Cloud computing</topic><topic>Computer centers</topic><topic>CPU</topic><topic>Data centers</topic><topic>Forecasting</topic><topic>network bandwidth</topic><topic>neural network</topic><topic>prediction algorithms</topic><topic>Recurrent neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duggan, M.</creatorcontrib><creatorcontrib>Shaw, R.</creatorcontrib><creatorcontrib>Duggan, J.</creatorcontrib><creatorcontrib>Howley, E.</creatorcontrib><creatorcontrib>Barrett, E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Software, practice &amp; experience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duggan, M.</au><au>Shaw, R.</au><au>Duggan, J.</au><au>Howley, E.</au><au>Barrett, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multitime‐steps‐ahead prediction approach for scheduling live migration in cloud data centers</atitle><jtitle>Software, practice &amp; experience</jtitle><date>2019-04</date><risdate>2019</risdate><volume>49</volume><issue>4</issue><spage>617</spage><epage>639</epage><pages>617-639</pages><issn>0038-0644</issn><eissn>1097-024X</eissn><abstract>Summary One of the major challenges facing cloud computing is to accurately predict future resource usage to provision data centers for future demands. Cloud resources are constantly in a state of flux, making it difficult for forecasting algorithms to produce accurate predictions for short times scales (ie, 5 minutes to 1 hour). This motivates the research presented in this paper, which compares nonlinear and linear forecasting methods with a sequence prediction algorithm known as a recurrent neural network to predict CPU utilization and network bandwidth usage for live migration. Experimental results demonstrate that a multitime‐ahead prediction algorithm reduces bandwidth consumption during critical times and improves overall efficiency of a data center.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/spe.2635</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9576-3884</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0038-0644
ispartof Software, practice & experience, 2019-04, Vol.49 (4), p.617-639
issn 0038-0644
1097-024X
language eng
recordid cdi_proquest_journals_2187372692
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Bandwidths
Cloud computing
Computer centers
CPU
Data centers
Forecasting
network bandwidth
neural network
prediction algorithms
Recurrent neural networks
title A multitime‐steps‐ahead prediction approach for scheduling live migration in cloud data centers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multitime%E2%80%90steps%E2%80%90ahead%20prediction%20approach%20for%20scheduling%20live%20migration%20in%20cloud%20data%20centers&rft.jtitle=Software,%20practice%20&%20experience&rft.au=Duggan,%20M.&rft.date=2019-04&rft.volume=49&rft.issue=4&rft.spage=617&rft.epage=639&rft.pages=617-639&rft.issn=0038-0644&rft.eissn=1097-024X&rft_id=info:doi/10.1002/spe.2635&rft_dat=%3Cproquest_cross%3E2187372692%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187372692&rft_id=info:pmid/&rfr_iscdi=true