Parabolic Set Simulation for Reachability Analysis of Linear Time Invariant Systems with Integral Quadratic Constraint

This work extends reachability analyses based on ellipsoidal techniques to Linear Time Invariant (LTI) systems subject to an integral quadratic constraint (IQC) between the past state and disturbance signals , interpreted as an input-output energetic constraint. To compute the reachable set, the LTI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-02
Hauptverfasser: Rousse, Paul, Pierre-Loïc Garoche, Henrion, Didier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Rousse, Paul
Pierre-Loïc Garoche
Henrion, Didier
description This work extends reachability analyses based on ellipsoidal techniques to Linear Time Invariant (LTI) systems subject to an integral quadratic constraint (IQC) between the past state and disturbance signals , interpreted as an input-output energetic constraint. To compute the reachable set, the LTI system is augmented with a state corresponding to the amount of energy still available before the constraint is violated. For a given parabolic set of initial states, the reachable set of the augmented system is overapproximated with a time-varying parabolic set. Parameters of this paraboloid are expressed as the solution of an Initial Value Problem (IVP) and the overapproximation relationship with the reachable set is proved. This paraboloid is actually supported by the reachable set on so-called touching trajectories. Finally , we describe a method to generate all the supporting paraboloids and prove that their intersection is an exact characterization of the reachable set. This work provides new practical means to compute overapproximation of reachable sets for a wide variety of systems such as delayed systems, rate limiters or energy-bounded linear systems.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2187109320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187109320</sourcerecordid><originalsourceid>FETCH-proquest_journals_21871093203</originalsourceid><addsrcrecordid>eNqNjcFqAkEQRAchoBj_ocGzMDsTox5FDBFySKJ3addZbZmd0e5ew_599uAHeCooXr3qmYHzvpjM35zrm5HIxVrr3mduOvUDc_9GxkOOVMI2KGypbiIq5QRVZvgNWJ7xQJG0hWXC2AoJ5Aq-KAVk2FEdYJPuyISpW7eioRb4Iz13tYYTY4SfBo_cOUtY5STKSElfzUuFUcLokUMz_ljvVp-TK-dbE0T3l9xwdyh7V8xnhV14Z_1z1D_lT01P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187109320</pqid></control><display><type>article</type><title>Parabolic Set Simulation for Reachability Analysis of Linear Time Invariant Systems with Integral Quadratic Constraint</title><source>Free E- Journals</source><creator>Rousse, Paul ; Pierre-Loïc Garoche ; Henrion, Didier</creator><creatorcontrib>Rousse, Paul ; Pierre-Loïc Garoche ; Henrion, Didier</creatorcontrib><description>This work extends reachability analyses based on ellipsoidal techniques to Linear Time Invariant (LTI) systems subject to an integral quadratic constraint (IQC) between the past state and disturbance signals , interpreted as an input-output energetic constraint. To compute the reachable set, the LTI system is augmented with a state corresponding to the amount of energy still available before the constraint is violated. For a given parabolic set of initial states, the reachable set of the augmented system is overapproximated with a time-varying parabolic set. Parameters of this paraboloid are expressed as the solution of an Initial Value Problem (IVP) and the overapproximation relationship with the reachable set is proved. This paraboloid is actually supported by the reachable set on so-called touching trajectories. Finally , we describe a method to generate all the supporting paraboloids and prove that their intersection is an exact characterization of the reachable set. This work provides new practical means to compute overapproximation of reachable sets for a wide variety of systems such as delayed systems, rate limiters or energy-bounded linear systems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundary value problems ; Computer simulation ; Integrals ; Linear systems ; Parabolic bodies ; Time invariant systems</subject><ispartof>arXiv.org, 2020-02</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Rousse, Paul</creatorcontrib><creatorcontrib>Pierre-Loïc Garoche</creatorcontrib><creatorcontrib>Henrion, Didier</creatorcontrib><title>Parabolic Set Simulation for Reachability Analysis of Linear Time Invariant Systems with Integral Quadratic Constraint</title><title>arXiv.org</title><description>This work extends reachability analyses based on ellipsoidal techniques to Linear Time Invariant (LTI) systems subject to an integral quadratic constraint (IQC) between the past state and disturbance signals , interpreted as an input-output energetic constraint. To compute the reachable set, the LTI system is augmented with a state corresponding to the amount of energy still available before the constraint is violated. For a given parabolic set of initial states, the reachable set of the augmented system is overapproximated with a time-varying parabolic set. Parameters of this paraboloid are expressed as the solution of an Initial Value Problem (IVP) and the overapproximation relationship with the reachable set is proved. This paraboloid is actually supported by the reachable set on so-called touching trajectories. Finally , we describe a method to generate all the supporting paraboloids and prove that their intersection is an exact characterization of the reachable set. This work provides new practical means to compute overapproximation of reachable sets for a wide variety of systems such as delayed systems, rate limiters or energy-bounded linear systems.</description><subject>Boundary value problems</subject><subject>Computer simulation</subject><subject>Integrals</subject><subject>Linear systems</subject><subject>Parabolic bodies</subject><subject>Time invariant systems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjcFqAkEQRAchoBj_ocGzMDsTox5FDBFySKJ3addZbZmd0e5ew_599uAHeCooXr3qmYHzvpjM35zrm5HIxVrr3mduOvUDc_9GxkOOVMI2KGypbiIq5QRVZvgNWJ7xQJG0hWXC2AoJ5Aq-KAVk2FEdYJPuyISpW7eioRb4Iz13tYYTY4SfBo_cOUtY5STKSElfzUuFUcLokUMz_ljvVp-TK-dbE0T3l9xwdyh7V8xnhV14Z_1z1D_lT01P</recordid><startdate>20200213</startdate><enddate>20200213</enddate><creator>Rousse, Paul</creator><creator>Pierre-Loïc Garoche</creator><creator>Henrion, Didier</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200213</creationdate><title>Parabolic Set Simulation for Reachability Analysis of Linear Time Invariant Systems with Integral Quadratic Constraint</title><author>Rousse, Paul ; Pierre-Loïc Garoche ; Henrion, Didier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21871093203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Boundary value problems</topic><topic>Computer simulation</topic><topic>Integrals</topic><topic>Linear systems</topic><topic>Parabolic bodies</topic><topic>Time invariant systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Rousse, Paul</creatorcontrib><creatorcontrib>Pierre-Loïc Garoche</creatorcontrib><creatorcontrib>Henrion, Didier</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rousse, Paul</au><au>Pierre-Loïc Garoche</au><au>Henrion, Didier</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Parabolic Set Simulation for Reachability Analysis of Linear Time Invariant Systems with Integral Quadratic Constraint</atitle><jtitle>arXiv.org</jtitle><date>2020-02-13</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>This work extends reachability analyses based on ellipsoidal techniques to Linear Time Invariant (LTI) systems subject to an integral quadratic constraint (IQC) between the past state and disturbance signals , interpreted as an input-output energetic constraint. To compute the reachable set, the LTI system is augmented with a state corresponding to the amount of energy still available before the constraint is violated. For a given parabolic set of initial states, the reachable set of the augmented system is overapproximated with a time-varying parabolic set. Parameters of this paraboloid are expressed as the solution of an Initial Value Problem (IVP) and the overapproximation relationship with the reachable set is proved. This paraboloid is actually supported by the reachable set on so-called touching trajectories. Finally , we describe a method to generate all the supporting paraboloids and prove that their intersection is an exact characterization of the reachable set. This work provides new practical means to compute overapproximation of reachable sets for a wide variety of systems such as delayed systems, rate limiters or energy-bounded linear systems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2187109320
source Free E- Journals
subjects Boundary value problems
Computer simulation
Integrals
Linear systems
Parabolic bodies
Time invariant systems
title Parabolic Set Simulation for Reachability Analysis of Linear Time Invariant Systems with Integral Quadratic Constraint
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A44%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Parabolic%20Set%20Simulation%20for%20Reachability%20Analysis%20of%20Linear%20Time%20Invariant%20Systems%20with%20Integral%20Quadratic%20Constraint&rft.jtitle=arXiv.org&rft.au=Rousse,%20Paul&rft.date=2020-02-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2187109320%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187109320&rft_id=info:pmid/&rfr_iscdi=true