A performance evaluation of neuro-fuzzy and regression methods in estimation of sediment load of selective rivers
Sediment rating curves (SRCs) have been recognized as the most popular method for estimating sediment in the hydrology of river sediments and in watersheds. In this regard, in order to compare and correct estimation methods of river sediment load, estimated rates of several univariate types of SRCs...
Gespeichert in:
Veröffentlicht in: | Acta geophysica 2019-02, Vol.67 (1), p.205-214 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 214 |
---|---|
container_issue | 1 |
container_start_page | 205 |
container_title | Acta geophysica |
container_volume | 67 |
creator | Varvani, J. Khaleghi, M. R. |
description | Sediment rating curves (SRCs) have been recognized as the most popular method for estimating sediment in the hydrology of river sediments and in watersheds. In this regard, in order to compare and correct estimation methods of river sediment load, estimated rates of several univariate types of SRCs and a multivariate type of SRCs (MSRCs) were studied using the neuro-fuzzy and tree regression models in five selective hydrometric stations of different climatic zones of Iran and with various indexes of the accuracy (AI) and the precision (PI). The results of the data analysis showed that the mean of the AI of neuro-fuzzy and tree regression models in selective stations is 151 and 536%, respectively, which shows the low efficiency compared with SRCs. Also according to the results, the best rate of the AI of the MSRCs belongs to the Glink station with the rate of 1.12. Also, the average value of the AI of MSRCs is 1.15 which is an acceptable amount of the other considered various methods. |
doi_str_mv | 10.1007/s11600-018-0228-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2187097540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2137639811</sourcerecordid><originalsourceid>FETCH-LOGICAL-a410t-4d50df886e48921feacfc5be166fcbb751b0cbe03bdb43c304077ff47205f2a03</originalsourceid><addsrcrecordid>eNqFUE1PwzAMrRBIjMEP4BaJc8FJk6Y9ThNf0iQucI7S1Bmd2mZL2knbrydTEZwQF9uy33u2X5LcUrinAPIhUJoDpECLFBgr0vIsmdGiFKnkQpx_17mQ7DK5CmEDkHOgbJbsFmSL3jrf6d4gwb1uRz00rifOkh5H71I7Ho8HovuaeFx7DOE07XD4dHUgTU8wDE33wwlYNx32A2mdrqdGi2Zo9kh8DD5cJxdWtwFvvvM8-Xh6fF--pKu359flYpVqTmFIeS2gtkWRIy9KRi1qY42okOa5NVUlBa3AVAhZVVc8MxlwkNJaLhkIyzRk8-Ru0t16txvjkWrjRt_HlYrRQkIpBf8Hlck8KwtKI4pOKONdCB6t2vr4sz8oCurkv5r8V9F_dfJflZHDJk6I2H6N_lf5b9IXMXaJqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137639811</pqid></control><display><type>article</type><title>A performance evaluation of neuro-fuzzy and regression methods in estimation of sediment load of selective rivers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Varvani, J. ; Khaleghi, M. R.</creator><creatorcontrib>Varvani, J. ; Khaleghi, M. R.</creatorcontrib><description>Sediment rating curves (SRCs) have been recognized as the most popular method for estimating sediment in the hydrology of river sediments and in watersheds. In this regard, in order to compare and correct estimation methods of river sediment load, estimated rates of several univariate types of SRCs and a multivariate type of SRCs (MSRCs) were studied using the neuro-fuzzy and tree regression models in five selective hydrometric stations of different climatic zones of Iran and with various indexes of the accuracy (AI) and the precision (PI). The results of the data analysis showed that the mean of the AI of neuro-fuzzy and tree regression models in selective stations is 151 and 536%, respectively, which shows the low efficiency compared with SRCs. Also according to the results, the best rate of the AI of the MSRCs belongs to the Glink station with the rate of 1.12. Also, the average value of the AI of MSRCs is 1.15 which is an acceptable amount of the other considered various methods.</description><identifier>ISSN: 1895-6572</identifier><identifier>EISSN: 1895-7455</identifier><identifier>DOI: 10.1007/s11600-018-0228-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Artificial neural networks ; Climatic zones ; Data analysis ; Earth and Environmental Science ; Earth Sciences ; Fluvial sediments ; Fuzzy logic ; Geophysics/Geodesy ; Geotechnical Engineering & Applied Earth Sciences ; Hydrologic models ; Hydrology ; Hydrometric stations ; Load distribution ; Performance evaluation ; Performance indices ; Regression analysis ; Regression models ; Research Article - Hydrology ; River sediments ; Rivers ; Sediment load ; Sediments ; Stations ; Structural Geology ; Watersheds</subject><ispartof>Acta geophysica, 2019-02, Vol.67 (1), p.205-214</ispartof><rights>Institute of Geophysics, Polish Academy of Sciences & Polish Academy of Sciences 2018</rights><rights>Acta Geophysica is a copyright of Springer, (2018). All Rights Reserved.</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a410t-4d50df886e48921feacfc5be166fcbb751b0cbe03bdb43c304077ff47205f2a03</citedby><cites>FETCH-LOGICAL-a410t-4d50df886e48921feacfc5be166fcbb751b0cbe03bdb43c304077ff47205f2a03</cites><orcidid>0000-0003-3611-3755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11600-018-0228-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11600-018-0228-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Varvani, J.</creatorcontrib><creatorcontrib>Khaleghi, M. R.</creatorcontrib><title>A performance evaluation of neuro-fuzzy and regression methods in estimation of sediment load of selective rivers</title><title>Acta geophysica</title><addtitle>Acta Geophys</addtitle><description>Sediment rating curves (SRCs) have been recognized as the most popular method for estimating sediment in the hydrology of river sediments and in watersheds. In this regard, in order to compare and correct estimation methods of river sediment load, estimated rates of several univariate types of SRCs and a multivariate type of SRCs (MSRCs) were studied using the neuro-fuzzy and tree regression models in five selective hydrometric stations of different climatic zones of Iran and with various indexes of the accuracy (AI) and the precision (PI). The results of the data analysis showed that the mean of the AI of neuro-fuzzy and tree regression models in selective stations is 151 and 536%, respectively, which shows the low efficiency compared with SRCs. Also according to the results, the best rate of the AI of the MSRCs belongs to the Glink station with the rate of 1.12. Also, the average value of the AI of MSRCs is 1.15 which is an acceptable amount of the other considered various methods.</description><subject>Artificial neural networks</subject><subject>Climatic zones</subject><subject>Data analysis</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluvial sediments</subject><subject>Fuzzy logic</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Hydrometric stations</subject><subject>Load distribution</subject><subject>Performance evaluation</subject><subject>Performance indices</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Research Article - Hydrology</subject><subject>River sediments</subject><subject>Rivers</subject><subject>Sediment load</subject><subject>Sediments</subject><subject>Stations</subject><subject>Structural Geology</subject><subject>Watersheds</subject><issn>1895-6572</issn><issn>1895-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFUE1PwzAMrRBIjMEP4BaJc8FJk6Y9ThNf0iQucI7S1Bmd2mZL2knbrydTEZwQF9uy33u2X5LcUrinAPIhUJoDpECLFBgr0vIsmdGiFKnkQpx_17mQ7DK5CmEDkHOgbJbsFmSL3jrf6d4gwb1uRz00rifOkh5H71I7Ho8HovuaeFx7DOE07XD4dHUgTU8wDE33wwlYNx32A2mdrqdGi2Zo9kh8DD5cJxdWtwFvvvM8-Xh6fF--pKu359flYpVqTmFIeS2gtkWRIy9KRi1qY42okOa5NVUlBa3AVAhZVVc8MxlwkNJaLhkIyzRk8-Ru0t16txvjkWrjRt_HlYrRQkIpBf8Hlck8KwtKI4pOKONdCB6t2vr4sz8oCurkv5r8V9F_dfJflZHDJk6I2H6N_lf5b9IXMXaJqg</recordid><startdate>20190204</startdate><enddate>20190204</enddate><creator>Varvani, J.</creator><creator>Khaleghi, M. R.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3611-3755</orcidid></search><sort><creationdate>20190204</creationdate><title>A performance evaluation of neuro-fuzzy and regression methods in estimation of sediment load of selective rivers</title><author>Varvani, J. ; Khaleghi, M. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a410t-4d50df886e48921feacfc5be166fcbb751b0cbe03bdb43c304077ff47205f2a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Climatic zones</topic><topic>Data analysis</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluvial sediments</topic><topic>Fuzzy logic</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Hydrometric stations</topic><topic>Load distribution</topic><topic>Performance evaluation</topic><topic>Performance indices</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Research Article - Hydrology</topic><topic>River sediments</topic><topic>Rivers</topic><topic>Sediment load</topic><topic>Sediments</topic><topic>Stations</topic><topic>Structural Geology</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varvani, J.</creatorcontrib><creatorcontrib>Khaleghi, M. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta geophysica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varvani, J.</au><au>Khaleghi, M. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A performance evaluation of neuro-fuzzy and regression methods in estimation of sediment load of selective rivers</atitle><jtitle>Acta geophysica</jtitle><stitle>Acta Geophys</stitle><date>2019-02-04</date><risdate>2019</risdate><volume>67</volume><issue>1</issue><spage>205</spage><epage>214</epage><pages>205-214</pages><issn>1895-6572</issn><eissn>1895-7455</eissn><abstract>Sediment rating curves (SRCs) have been recognized as the most popular method for estimating sediment in the hydrology of river sediments and in watersheds. In this regard, in order to compare and correct estimation methods of river sediment load, estimated rates of several univariate types of SRCs and a multivariate type of SRCs (MSRCs) were studied using the neuro-fuzzy and tree regression models in five selective hydrometric stations of different climatic zones of Iran and with various indexes of the accuracy (AI) and the precision (PI). The results of the data analysis showed that the mean of the AI of neuro-fuzzy and tree regression models in selective stations is 151 and 536%, respectively, which shows the low efficiency compared with SRCs. Also according to the results, the best rate of the AI of the MSRCs belongs to the Glink station with the rate of 1.12. Also, the average value of the AI of MSRCs is 1.15 which is an acceptable amount of the other considered various methods.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11600-018-0228-9</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3611-3755</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1895-6572 |
ispartof | Acta geophysica, 2019-02, Vol.67 (1), p.205-214 |
issn | 1895-6572 1895-7455 |
language | eng |
recordid | cdi_proquest_journals_2187097540 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial neural networks Climatic zones Data analysis Earth and Environmental Science Earth Sciences Fluvial sediments Fuzzy logic Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Hydrologic models Hydrology Hydrometric stations Load distribution Performance evaluation Performance indices Regression analysis Regression models Research Article - Hydrology River sediments Rivers Sediment load Sediments Stations Structural Geology Watersheds |
title | A performance evaluation of neuro-fuzzy and regression methods in estimation of sediment load of selective rivers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A04%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20performance%20evaluation%20of%20neuro-fuzzy%20and%20regression%20methods%20in%20estimation%20of%20sediment%20load%20of%20selective%20rivers&rft.jtitle=Acta%20geophysica&rft.au=Varvani,%20J.&rft.date=2019-02-04&rft.volume=67&rft.issue=1&rft.spage=205&rft.epage=214&rft.pages=205-214&rft.issn=1895-6572&rft.eissn=1895-7455&rft_id=info:doi/10.1007/s11600-018-0228-9&rft_dat=%3Cproquest_cross%3E2137639811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137639811&rft_id=info:pmid/&rfr_iscdi=true |