Dependence structures of multivariate Bernoulli random vectors
In some situations, it is difficult and tedious to check notions of dependence properties and dependence orders for multivariate distributions supported on a finite lattice. The purpose of this paper is to utilize a newly developed tool, majorization with respect to weighted trees, to lay out some g...
Gespeichert in:
Veröffentlicht in: | Journal of multivariate analysis 2005-05, Vol.94 (1), p.172-195 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 195 |
---|---|
container_issue | 1 |
container_start_page | 172 |
container_title | Journal of multivariate analysis |
container_volume | 94 |
creator | Hu, Taizhong Xie, Chaode Ruan, Lingyan |
description | In some situations, it is difficult and tedious to check notions of dependence properties and dependence orders for multivariate distributions supported on a finite lattice. The purpose of this paper is to utilize a newly developed tool, majorization with respect to weighted trees, to lay out some general results that can be used to identify some dependence properties and dependence orders for multivariate Bernoulli random vectors. Such a study gives us some new insight into the relations between the concepts of dependence. |
doi_str_mv | 10.1016/j.jmva.2004.02.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_218704481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047259X04000387</els_id><sourcerecordid>820658381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-5e8e4f5dd5aaf6790eb31fd960834c4138587ab9bf5a628d7c765633d9b5a9df3</originalsourceid><addsrcrecordid>eNp9kc1rFTEUxYMo-Kz-A10NgsuZ5nMyARG0am0puFHoLuQlN5hhPp7JzED_e-_wiu5cnNxFzrk5_ELIJaMNo6y96pt-3FzDKZUN5Q1l6hk5MGpUrbkUz8kBL3TNlXl4SV6V0lPKmNLyQD58hhNMASYPVVny6pc1Q6nmWI3rsKTN5eQWqD5BnuZ1GFKV3RTmsdrAL3Mur8mL6IYCb57mBfn59cuP62_1_feb2-uP97WXXC61gg5kVCEo52KrDYWjYDGYlnZCeslEpzrtjuYYlWt5F7TXrWqFCOaonAlRXJC3572nPP9eoSy2n9c84ZOWs05TKTuGJn42-TyXkiHaU06jy4-WUbtjsr3dMdkdk6XcIiYM3Z1DGUH4vwkA2K2Ts5sVzkg8HlGYVDgSiqFO-9TcMqPsr2XEZe-earri3RARlk_lX41Wa6qFRN_7sw-Q2ZYg2-LT_gchZQRrw5z-1_kP3nqXPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218704481</pqid></control><display><type>article</type><title>Dependence structures of multivariate Bernoulli random vectors</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hu, Taizhong ; Xie, Chaode ; Ruan, Lingyan</creator><creatorcontrib>Hu, Taizhong ; Xie, Chaode ; Ruan, Lingyan</creatorcontrib><description>In some situations, it is difficult and tedious to check notions of dependence properties and dependence orders for multivariate distributions supported on a finite lattice. The purpose of this paper is to utilize a newly developed tool, majorization with respect to weighted trees, to lay out some general results that can be used to identify some dependence properties and dependence orders for multivariate Bernoulli random vectors. Such a study gives us some new insight into the relations between the concepts of dependence.</description><identifier>ISSN: 0047-259X</identifier><identifier>EISSN: 1095-7243</identifier><identifier>DOI: 10.1016/j.jmva.2004.02.015</identifier><identifier>CODEN: JMVAAI</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Bernoulli Hypothesis ; Combinatorics ; Combinatorics. Ordered structures ; Concordance order ; Dependence ; Distribution ; Distribution theory ; Exact sciences and technology ; Graph theory ; Majorization with respect to weighted trees ; Mathematical models ; Mathematics ; Multivariate analysis ; Positive (negative) orthant dependent ; Positively (negatively) supermodular dependent ; Probability and statistics ; Probability theory and stochastic processes ; Probability trees ; Sciences and techniques of general use ; Statistics ; Strongly positive (negative) orthant dependent ; Studies ; Supermodular order ; Weakly positive (negatively) associated ; Weakly positive (negatively) associated Positively (negatively) supermodular dependent Strongly positive (negative) orthant dependent Positive (negative) orthant dependent Supermodular order Concordance order Majorization with respect to weighted trees Probability trees</subject><ispartof>Journal of multivariate analysis, 2005-05, Vol.94 (1), p.172-195</ispartof><rights>2004 Elsevier Inc.</rights><rights>2005 INIST-CNRS</rights><rights>Copyright Taylor & Francis Group May 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-5e8e4f5dd5aaf6790eb31fd960834c4138587ab9bf5a628d7c765633d9b5a9df3</citedby><cites>FETCH-LOGICAL-c424t-5e8e4f5dd5aaf6790eb31fd960834c4138587ab9bf5a628d7c765633d9b5a9df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmva.2004.02.015$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16770734$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeejmvana/v_3a94_3ay_3a2005_3ai_3a1_3ap_3a172-195.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Taizhong</creatorcontrib><creatorcontrib>Xie, Chaode</creatorcontrib><creatorcontrib>Ruan, Lingyan</creatorcontrib><title>Dependence structures of multivariate Bernoulli random vectors</title><title>Journal of multivariate analysis</title><description>In some situations, it is difficult and tedious to check notions of dependence properties and dependence orders for multivariate distributions supported on a finite lattice. The purpose of this paper is to utilize a newly developed tool, majorization with respect to weighted trees, to lay out some general results that can be used to identify some dependence properties and dependence orders for multivariate Bernoulli random vectors. Such a study gives us some new insight into the relations between the concepts of dependence.</description><subject>Bernoulli Hypothesis</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Concordance order</subject><subject>Dependence</subject><subject>Distribution</subject><subject>Distribution theory</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Majorization with respect to weighted trees</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Positive (negative) orthant dependent</subject><subject>Positively (negatively) supermodular dependent</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Probability trees</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Strongly positive (negative) orthant dependent</subject><subject>Studies</subject><subject>Supermodular order</subject><subject>Weakly positive (negatively) associated</subject><subject>Weakly positive (negatively) associated Positively (negatively) supermodular dependent Strongly positive (negative) orthant dependent Positive (negative) orthant dependent Supermodular order Concordance order Majorization with respect to weighted trees Probability trees</subject><issn>0047-259X</issn><issn>1095-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kc1rFTEUxYMo-Kz-A10NgsuZ5nMyARG0am0puFHoLuQlN5hhPp7JzED_e-_wiu5cnNxFzrk5_ELIJaMNo6y96pt-3FzDKZUN5Q1l6hk5MGpUrbkUz8kBL3TNlXl4SV6V0lPKmNLyQD58hhNMASYPVVny6pc1Q6nmWI3rsKTN5eQWqD5BnuZ1GFKV3RTmsdrAL3Mur8mL6IYCb57mBfn59cuP62_1_feb2-uP97WXXC61gg5kVCEo52KrDYWjYDGYlnZCeslEpzrtjuYYlWt5F7TXrWqFCOaonAlRXJC3572nPP9eoSy2n9c84ZOWs05TKTuGJn42-TyXkiHaU06jy4-WUbtjsr3dMdkdk6XcIiYM3Z1DGUH4vwkA2K2Ts5sVzkg8HlGYVDgSiqFO-9TcMqPsr2XEZe-earri3RARlk_lX41Wa6qFRN_7sw-Q2ZYg2-LT_gchZQRrw5z-1_kP3nqXPQ</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Hu, Taizhong</creator><creator>Xie, Chaode</creator><creator>Ruan, Lingyan</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Taylor & Francis LLC</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20050501</creationdate><title>Dependence structures of multivariate Bernoulli random vectors</title><author>Hu, Taizhong ; Xie, Chaode ; Ruan, Lingyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-5e8e4f5dd5aaf6790eb31fd960834c4138587ab9bf5a628d7c765633d9b5a9df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bernoulli Hypothesis</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Concordance order</topic><topic>Dependence</topic><topic>Distribution</topic><topic>Distribution theory</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Majorization with respect to weighted trees</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Positive (negative) orthant dependent</topic><topic>Positively (negatively) supermodular dependent</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Probability trees</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Strongly positive (negative) orthant dependent</topic><topic>Studies</topic><topic>Supermodular order</topic><topic>Weakly positive (negatively) associated</topic><topic>Weakly positive (negatively) associated Positively (negatively) supermodular dependent Strongly positive (negative) orthant dependent Positive (negative) orthant dependent Supermodular order Concordance order Majorization with respect to weighted trees Probability trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Taizhong</creatorcontrib><creatorcontrib>Xie, Chaode</creatorcontrib><creatorcontrib>Ruan, Lingyan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of multivariate analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Taizhong</au><au>Xie, Chaode</au><au>Ruan, Lingyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dependence structures of multivariate Bernoulli random vectors</atitle><jtitle>Journal of multivariate analysis</jtitle><date>2005-05-01</date><risdate>2005</risdate><volume>94</volume><issue>1</issue><spage>172</spage><epage>195</epage><pages>172-195</pages><issn>0047-259X</issn><eissn>1095-7243</eissn><coden>JMVAAI</coden><abstract>In some situations, it is difficult and tedious to check notions of dependence properties and dependence orders for multivariate distributions supported on a finite lattice. The purpose of this paper is to utilize a newly developed tool, majorization with respect to weighted trees, to lay out some general results that can be used to identify some dependence properties and dependence orders for multivariate Bernoulli random vectors. Such a study gives us some new insight into the relations between the concepts of dependence.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jmva.2004.02.015</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0047-259X |
ispartof | Journal of multivariate analysis, 2005-05, Vol.94 (1), p.172-195 |
issn | 0047-259X 1095-7243 |
language | eng |
recordid | cdi_proquest_journals_218704481 |
source | RePEc; Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Bernoulli Hypothesis Combinatorics Combinatorics. Ordered structures Concordance order Dependence Distribution Distribution theory Exact sciences and technology Graph theory Majorization with respect to weighted trees Mathematical models Mathematics Multivariate analysis Positive (negative) orthant dependent Positively (negatively) supermodular dependent Probability and statistics Probability theory and stochastic processes Probability trees Sciences and techniques of general use Statistics Strongly positive (negative) orthant dependent Studies Supermodular order Weakly positive (negatively) associated Weakly positive (negatively) associated Positively (negatively) supermodular dependent Strongly positive (negative) orthant dependent Positive (negative) orthant dependent Supermodular order Concordance order Majorization with respect to weighted trees Probability trees |
title | Dependence structures of multivariate Bernoulli random vectors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dependence%20structures%20of%20multivariate%20Bernoulli%20random%20vectors&rft.jtitle=Journal%20of%20multivariate%20analysis&rft.au=Hu,%20Taizhong&rft.date=2005-05-01&rft.volume=94&rft.issue=1&rft.spage=172&rft.epage=195&rft.pages=172-195&rft.issn=0047-259X&rft.eissn=1095-7243&rft.coden=JMVAAI&rft_id=info:doi/10.1016/j.jmva.2004.02.015&rft_dat=%3Cproquest_cross%3E820658381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218704481&rft_id=info:pmid/&rft_els_id=S0047259X04000387&rfr_iscdi=true |