Dependence structures of multivariate Bernoulli random vectors

In some situations, it is difficult and tedious to check notions of dependence properties and dependence orders for multivariate distributions supported on a finite lattice. The purpose of this paper is to utilize a newly developed tool, majorization with respect to weighted trees, to lay out some g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis 2005-05, Vol.94 (1), p.172-195
Hauptverfasser: Hu, Taizhong, Xie, Chaode, Ruan, Lingyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 195
container_issue 1
container_start_page 172
container_title Journal of multivariate analysis
container_volume 94
creator Hu, Taizhong
Xie, Chaode
Ruan, Lingyan
description In some situations, it is difficult and tedious to check notions of dependence properties and dependence orders for multivariate distributions supported on a finite lattice. The purpose of this paper is to utilize a newly developed tool, majorization with respect to weighted trees, to lay out some general results that can be used to identify some dependence properties and dependence orders for multivariate Bernoulli random vectors. Such a study gives us some new insight into the relations between the concepts of dependence.
doi_str_mv 10.1016/j.jmva.2004.02.015
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_218704481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047259X04000387</els_id><sourcerecordid>820658381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-5e8e4f5dd5aaf6790eb31fd960834c4138587ab9bf5a628d7c765633d9b5a9df3</originalsourceid><addsrcrecordid>eNp9kc1rFTEUxYMo-Kz-A10NgsuZ5nMyARG0am0puFHoLuQlN5hhPp7JzED_e-_wiu5cnNxFzrk5_ELIJaMNo6y96pt-3FzDKZUN5Q1l6hk5MGpUrbkUz8kBL3TNlXl4SV6V0lPKmNLyQD58hhNMASYPVVny6pc1Q6nmWI3rsKTN5eQWqD5BnuZ1GFKV3RTmsdrAL3Mur8mL6IYCb57mBfn59cuP62_1_feb2-uP97WXXC61gg5kVCEo52KrDYWjYDGYlnZCeslEpzrtjuYYlWt5F7TXrWqFCOaonAlRXJC3572nPP9eoSy2n9c84ZOWs05TKTuGJn42-TyXkiHaU06jy4-WUbtjsr3dMdkdk6XcIiYM3Z1DGUH4vwkA2K2Ts5sVzkg8HlGYVDgSiqFO-9TcMqPsr2XEZe-earri3RARlk_lX41Wa6qFRN_7sw-Q2ZYg2-LT_gchZQRrw5z-1_kP3nqXPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218704481</pqid></control><display><type>article</type><title>Dependence structures of multivariate Bernoulli random vectors</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Hu, Taizhong ; Xie, Chaode ; Ruan, Lingyan</creator><creatorcontrib>Hu, Taizhong ; Xie, Chaode ; Ruan, Lingyan</creatorcontrib><description>In some situations, it is difficult and tedious to check notions of dependence properties and dependence orders for multivariate distributions supported on a finite lattice. The purpose of this paper is to utilize a newly developed tool, majorization with respect to weighted trees, to lay out some general results that can be used to identify some dependence properties and dependence orders for multivariate Bernoulli random vectors. Such a study gives us some new insight into the relations between the concepts of dependence.</description><identifier>ISSN: 0047-259X</identifier><identifier>EISSN: 1095-7243</identifier><identifier>DOI: 10.1016/j.jmva.2004.02.015</identifier><identifier>CODEN: JMVAAI</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Bernoulli Hypothesis ; Combinatorics ; Combinatorics. Ordered structures ; Concordance order ; Dependence ; Distribution ; Distribution theory ; Exact sciences and technology ; Graph theory ; Majorization with respect to weighted trees ; Mathematical models ; Mathematics ; Multivariate analysis ; Positive (negative) orthant dependent ; Positively (negatively) supermodular dependent ; Probability and statistics ; Probability theory and stochastic processes ; Probability trees ; Sciences and techniques of general use ; Statistics ; Strongly positive (negative) orthant dependent ; Studies ; Supermodular order ; Weakly positive (negatively) associated ; Weakly positive (negatively) associated Positively (negatively) supermodular dependent Strongly positive (negative) orthant dependent Positive (negative) orthant dependent Supermodular order Concordance order Majorization with respect to weighted trees Probability trees</subject><ispartof>Journal of multivariate analysis, 2005-05, Vol.94 (1), p.172-195</ispartof><rights>2004 Elsevier Inc.</rights><rights>2005 INIST-CNRS</rights><rights>Copyright Taylor &amp; Francis Group May 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-5e8e4f5dd5aaf6790eb31fd960834c4138587ab9bf5a628d7c765633d9b5a9df3</citedby><cites>FETCH-LOGICAL-c424t-5e8e4f5dd5aaf6790eb31fd960834c4138587ab9bf5a628d7c765633d9b5a9df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmva.2004.02.015$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16770734$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeejmvana/v_3a94_3ay_3a2005_3ai_3a1_3ap_3a172-195.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Taizhong</creatorcontrib><creatorcontrib>Xie, Chaode</creatorcontrib><creatorcontrib>Ruan, Lingyan</creatorcontrib><title>Dependence structures of multivariate Bernoulli random vectors</title><title>Journal of multivariate analysis</title><description>In some situations, it is difficult and tedious to check notions of dependence properties and dependence orders for multivariate distributions supported on a finite lattice. The purpose of this paper is to utilize a newly developed tool, majorization with respect to weighted trees, to lay out some general results that can be used to identify some dependence properties and dependence orders for multivariate Bernoulli random vectors. Such a study gives us some new insight into the relations between the concepts of dependence.</description><subject>Bernoulli Hypothesis</subject><subject>Combinatorics</subject><subject>Combinatorics. Ordered structures</subject><subject>Concordance order</subject><subject>Dependence</subject><subject>Distribution</subject><subject>Distribution theory</subject><subject>Exact sciences and technology</subject><subject>Graph theory</subject><subject>Majorization with respect to weighted trees</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Multivariate analysis</subject><subject>Positive (negative) orthant dependent</subject><subject>Positively (negatively) supermodular dependent</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Probability trees</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Strongly positive (negative) orthant dependent</subject><subject>Studies</subject><subject>Supermodular order</subject><subject>Weakly positive (negatively) associated</subject><subject>Weakly positive (negatively) associated Positively (negatively) supermodular dependent Strongly positive (negative) orthant dependent Positive (negative) orthant dependent Supermodular order Concordance order Majorization with respect to weighted trees Probability trees</subject><issn>0047-259X</issn><issn>1095-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNp9kc1rFTEUxYMo-Kz-A10NgsuZ5nMyARG0am0puFHoLuQlN5hhPp7JzED_e-_wiu5cnNxFzrk5_ELIJaMNo6y96pt-3FzDKZUN5Q1l6hk5MGpUrbkUz8kBL3TNlXl4SV6V0lPKmNLyQD58hhNMASYPVVny6pc1Q6nmWI3rsKTN5eQWqD5BnuZ1GFKV3RTmsdrAL3Mur8mL6IYCb57mBfn59cuP62_1_feb2-uP97WXXC61gg5kVCEo52KrDYWjYDGYlnZCeslEpzrtjuYYlWt5F7TXrWqFCOaonAlRXJC3572nPP9eoSy2n9c84ZOWs05TKTuGJn42-TyXkiHaU06jy4-WUbtjsr3dMdkdk6XcIiYM3Z1DGUH4vwkA2K2Ts5sVzkg8HlGYVDgSiqFO-9TcMqPsr2XEZe-earri3RARlk_lX41Wa6qFRN_7sw-Q2ZYg2-LT_gchZQRrw5z-1_kP3nqXPQ</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Hu, Taizhong</creator><creator>Xie, Chaode</creator><creator>Ruan, Lingyan</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Taylor &amp; Francis LLC</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20050501</creationdate><title>Dependence structures of multivariate Bernoulli random vectors</title><author>Hu, Taizhong ; Xie, Chaode ; Ruan, Lingyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-5e8e4f5dd5aaf6790eb31fd960834c4138587ab9bf5a628d7c765633d9b5a9df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bernoulli Hypothesis</topic><topic>Combinatorics</topic><topic>Combinatorics. Ordered structures</topic><topic>Concordance order</topic><topic>Dependence</topic><topic>Distribution</topic><topic>Distribution theory</topic><topic>Exact sciences and technology</topic><topic>Graph theory</topic><topic>Majorization with respect to weighted trees</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Multivariate analysis</topic><topic>Positive (negative) orthant dependent</topic><topic>Positively (negatively) supermodular dependent</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Probability trees</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Strongly positive (negative) orthant dependent</topic><topic>Studies</topic><topic>Supermodular order</topic><topic>Weakly positive (negatively) associated</topic><topic>Weakly positive (negatively) associated Positively (negatively) supermodular dependent Strongly positive (negative) orthant dependent Positive (negative) orthant dependent Supermodular order Concordance order Majorization with respect to weighted trees Probability trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Taizhong</creatorcontrib><creatorcontrib>Xie, Chaode</creatorcontrib><creatorcontrib>Ruan, Lingyan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of multivariate analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Taizhong</au><au>Xie, Chaode</au><au>Ruan, Lingyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dependence structures of multivariate Bernoulli random vectors</atitle><jtitle>Journal of multivariate analysis</jtitle><date>2005-05-01</date><risdate>2005</risdate><volume>94</volume><issue>1</issue><spage>172</spage><epage>195</epage><pages>172-195</pages><issn>0047-259X</issn><eissn>1095-7243</eissn><coden>JMVAAI</coden><abstract>In some situations, it is difficult and tedious to check notions of dependence properties and dependence orders for multivariate distributions supported on a finite lattice. The purpose of this paper is to utilize a newly developed tool, majorization with respect to weighted trees, to lay out some general results that can be used to identify some dependence properties and dependence orders for multivariate Bernoulli random vectors. Such a study gives us some new insight into the relations between the concepts of dependence.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jmva.2004.02.015</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0047-259X
ispartof Journal of multivariate analysis, 2005-05, Vol.94 (1), p.172-195
issn 0047-259X
1095-7243
language eng
recordid cdi_proquest_journals_218704481
source RePEc; Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Bernoulli Hypothesis
Combinatorics
Combinatorics. Ordered structures
Concordance order
Dependence
Distribution
Distribution theory
Exact sciences and technology
Graph theory
Majorization with respect to weighted trees
Mathematical models
Mathematics
Multivariate analysis
Positive (negative) orthant dependent
Positively (negatively) supermodular dependent
Probability and statistics
Probability theory and stochastic processes
Probability trees
Sciences and techniques of general use
Statistics
Strongly positive (negative) orthant dependent
Studies
Supermodular order
Weakly positive (negatively) associated
Weakly positive (negatively) associated Positively (negatively) supermodular dependent Strongly positive (negative) orthant dependent Positive (negative) orthant dependent Supermodular order Concordance order Majorization with respect to weighted trees Probability trees
title Dependence structures of multivariate Bernoulli random vectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dependence%20structures%20of%20multivariate%20Bernoulli%20random%20vectors&rft.jtitle=Journal%20of%20multivariate%20analysis&rft.au=Hu,%20Taizhong&rft.date=2005-05-01&rft.volume=94&rft.issue=1&rft.spage=172&rft.epage=195&rft.pages=172-195&rft.issn=0047-259X&rft.eissn=1095-7243&rft.coden=JMVAAI&rft_id=info:doi/10.1016/j.jmva.2004.02.015&rft_dat=%3Cproquest_cross%3E820658381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218704481&rft_id=info:pmid/&rft_els_id=S0047259X04000387&rfr_iscdi=true