The N-soliton solution and localized wave interaction solutions of the (2+1)-dimensional generalized Hirota-Satsuma-Ito equation
In this paper, the N-soliton solution is constructed for the (2+1)-dimensional generalized Hirota–Satsuma–Ito equation, from which some localized waves such as line solitons, lumps, periodic solitons and their interactions are obtained by choosing special parameters. Especially, by selecting appropr...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2019-02, Vol.77 (4), p.947-966 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 966 |
---|---|
container_issue | 4 |
container_start_page | 947 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 77 |
creator | Liu, Yaqing Wen, Xiao-Yong Wang, Deng-Shan |
description | In this paper, the N-soliton solution is constructed for the (2+1)-dimensional generalized Hirota–Satsuma–Ito equation, from which some localized waves such as line solitons, lumps, periodic solitons and their interactions are obtained by choosing special parameters. Especially, by selecting appropriate parameters on the multi-soliton solutions, the two soliton can reduce to a periodic soliton or a lump soliton, the three soliton can reduce to the elastic interaction solution between a line soliton and a periodic soliton or the elastic interaction between a line soliton and a lump soliton, while the four soliton can reduce to elastic interaction solutions among two line solitons and a periodic soliton or the elastic interaction ones between two periodic solitons. Detailed behaviours of such solutions are illustrated analytically and graphically by analysing the influence of parameters. Finally, an inelastic interaction solution between a lump soliton and a line soliton is constructed via the ansatz method, and the relevant interaction and propagation characteristics are discussed graphically. The results obtained in this paper may be helpful for understanding the interaction phenomena of localized nonlinear waves in two-dimensional nonlinear wave equations. |
doi_str_mv | 10.1016/j.camwa.2018.10.035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2187001766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122118306321</els_id><sourcerecordid>2187001766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-7d2e735983bc7860464cd8d375da5e2b430950aa07a712519a6ed2bf12884a083</originalsourceid><addsrcrecordid>eNp9kL1OXDEQhS0UJDbAE9BYSpMo8mZs3x9vkSJCJCChUAC1NWvPJl7dvQbbFwQVjx4vS1qqGZ0558j-GDuRMJcgu2_rucPNI84VSFOVOeh2j82k6bXou858YDMwCyOkUvKAfcx5DQCNVjBjLzd_if8WOQ6hxJHXOZVQFxw9H6LDITyT54_4QDyMhRK61_N_X-ZxxUut-Ky-yi_Chw2Nueo48D80Vvsufx5SLCiuseRpg-KiRE73E24bjtj-CodMx2_zkN3-PLs5PReXV78uTn9cCqe1LKL3inrdLoxeut500HSN88brvvXYklo2GhYtIEKPvVStXGBHXi1XUhnTIBh9yD7teu9SvJ8oF7uOU6oPzVZVUACykqouvXO5FHNOtLJ3KWwwPVkJdovaru0rartFvRUr6pr6vktR_cBDoGSzCzQ68iGRK9bH8G7-H2uOiQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187001766</pqid></control><display><type>article</type><title>The N-soliton solution and localized wave interaction solutions of the (2+1)-dimensional generalized Hirota-Satsuma-Ito equation</title><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Liu, Yaqing ; Wen, Xiao-Yong ; Wang, Deng-Shan</creator><creatorcontrib>Liu, Yaqing ; Wen, Xiao-Yong ; Wang, Deng-Shan</creatorcontrib><description>In this paper, the N-soliton solution is constructed for the (2+1)-dimensional generalized Hirota–Satsuma–Ito equation, from which some localized waves such as line solitons, lumps, periodic solitons and their interactions are obtained by choosing special parameters. Especially, by selecting appropriate parameters on the multi-soliton solutions, the two soliton can reduce to a periodic soliton or a lump soliton, the three soliton can reduce to the elastic interaction solution between a line soliton and a periodic soliton or the elastic interaction between a line soliton and a lump soliton, while the four soliton can reduce to elastic interaction solutions among two line solitons and a periodic soliton or the elastic interaction ones between two periodic solitons. Detailed behaviours of such solutions are illustrated analytically and graphically by analysing the influence of parameters. Finally, an inelastic interaction solution between a lump soliton and a line soliton is constructed via the ansatz method, and the relevant interaction and propagation characteristics are discussed graphically. The results obtained in this paper may be helpful for understanding the interaction phenomena of localized nonlinear waves in two-dimensional nonlinear wave equations.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2018.10.035</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>[formula omitted]-soliton solution ; Generalized Hirota–Satsuma–Ito equation ; Interaction parameters ; Lump soliton ; Mathematical analysis ; Nonlinear equations ; Periodic soliton ; Solitary waves ; Wave equations ; Wave interaction</subject><ispartof>Computers & mathematics with applications (1987), 2019-02, Vol.77 (4), p.947-966</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-7d2e735983bc7860464cd8d375da5e2b430950aa07a712519a6ed2bf12884a083</citedby><cites>FETCH-LOGICAL-c331t-7d2e735983bc7860464cd8d375da5e2b430950aa07a712519a6ed2bf12884a083</cites><orcidid>0000-0003-1657-9064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0898122118306321$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Liu, Yaqing</creatorcontrib><creatorcontrib>Wen, Xiao-Yong</creatorcontrib><creatorcontrib>Wang, Deng-Shan</creatorcontrib><title>The N-soliton solution and localized wave interaction solutions of the (2+1)-dimensional generalized Hirota-Satsuma-Ito equation</title><title>Computers & mathematics with applications (1987)</title><description>In this paper, the N-soliton solution is constructed for the (2+1)-dimensional generalized Hirota–Satsuma–Ito equation, from which some localized waves such as line solitons, lumps, periodic solitons and their interactions are obtained by choosing special parameters. Especially, by selecting appropriate parameters on the multi-soliton solutions, the two soliton can reduce to a periodic soliton or a lump soliton, the three soliton can reduce to the elastic interaction solution between a line soliton and a periodic soliton or the elastic interaction between a line soliton and a lump soliton, while the four soliton can reduce to elastic interaction solutions among two line solitons and a periodic soliton or the elastic interaction ones between two periodic solitons. Detailed behaviours of such solutions are illustrated analytically and graphically by analysing the influence of parameters. Finally, an inelastic interaction solution between a lump soliton and a line soliton is constructed via the ansatz method, and the relevant interaction and propagation characteristics are discussed graphically. The results obtained in this paper may be helpful for understanding the interaction phenomena of localized nonlinear waves in two-dimensional nonlinear wave equations.</description><subject>[formula omitted]-soliton solution</subject><subject>Generalized Hirota–Satsuma–Ito equation</subject><subject>Interaction parameters</subject><subject>Lump soliton</subject><subject>Mathematical analysis</subject><subject>Nonlinear equations</subject><subject>Periodic soliton</subject><subject>Solitary waves</subject><subject>Wave equations</subject><subject>Wave interaction</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OXDEQhS0UJDbAE9BYSpMo8mZs3x9vkSJCJCChUAC1NWvPJl7dvQbbFwQVjx4vS1qqGZ0558j-GDuRMJcgu2_rucPNI84VSFOVOeh2j82k6bXou858YDMwCyOkUvKAfcx5DQCNVjBjLzd_if8WOQ6hxJHXOZVQFxw9H6LDITyT54_4QDyMhRK61_N_X-ZxxUut-Ky-yi_Chw2Nueo48D80Vvsufx5SLCiuseRpg-KiRE73E24bjtj-CodMx2_zkN3-PLs5PReXV78uTn9cCqe1LKL3inrdLoxeut500HSN88brvvXYklo2GhYtIEKPvVStXGBHXi1XUhnTIBh9yD7teu9SvJ8oF7uOU6oPzVZVUACykqouvXO5FHNOtLJ3KWwwPVkJdovaru0rartFvRUr6pr6vktR_cBDoGSzCzQ68iGRK9bH8G7-H2uOiQ0</recordid><startdate>20190215</startdate><enddate>20190215</enddate><creator>Liu, Yaqing</creator><creator>Wen, Xiao-Yong</creator><creator>Wang, Deng-Shan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1657-9064</orcidid></search><sort><creationdate>20190215</creationdate><title>The N-soliton solution and localized wave interaction solutions of the (2+1)-dimensional generalized Hirota-Satsuma-Ito equation</title><author>Liu, Yaqing ; Wen, Xiao-Yong ; Wang, Deng-Shan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-7d2e735983bc7860464cd8d375da5e2b430950aa07a712519a6ed2bf12884a083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>[formula omitted]-soliton solution</topic><topic>Generalized Hirota–Satsuma–Ito equation</topic><topic>Interaction parameters</topic><topic>Lump soliton</topic><topic>Mathematical analysis</topic><topic>Nonlinear equations</topic><topic>Periodic soliton</topic><topic>Solitary waves</topic><topic>Wave equations</topic><topic>Wave interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yaqing</creatorcontrib><creatorcontrib>Wen, Xiao-Yong</creatorcontrib><creatorcontrib>Wang, Deng-Shan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yaqing</au><au>Wen, Xiao-Yong</au><au>Wang, Deng-Shan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The N-soliton solution and localized wave interaction solutions of the (2+1)-dimensional generalized Hirota-Satsuma-Ito equation</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2019-02-15</date><risdate>2019</risdate><volume>77</volume><issue>4</issue><spage>947</spage><epage>966</epage><pages>947-966</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In this paper, the N-soliton solution is constructed for the (2+1)-dimensional generalized Hirota–Satsuma–Ito equation, from which some localized waves such as line solitons, lumps, periodic solitons and their interactions are obtained by choosing special parameters. Especially, by selecting appropriate parameters on the multi-soliton solutions, the two soliton can reduce to a periodic soliton or a lump soliton, the three soliton can reduce to the elastic interaction solution between a line soliton and a periodic soliton or the elastic interaction between a line soliton and a lump soliton, while the four soliton can reduce to elastic interaction solutions among two line solitons and a periodic soliton or the elastic interaction ones between two periodic solitons. Detailed behaviours of such solutions are illustrated analytically and graphically by analysing the influence of parameters. Finally, an inelastic interaction solution between a lump soliton and a line soliton is constructed via the ansatz method, and the relevant interaction and propagation characteristics are discussed graphically. The results obtained in this paper may be helpful for understanding the interaction phenomena of localized nonlinear waves in two-dimensional nonlinear wave equations.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2018.10.035</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-1657-9064</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2019-02, Vol.77 (4), p.947-966 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_journals_2187001766 |
source | Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | [formula omitted]-soliton solution Generalized Hirota–Satsuma–Ito equation Interaction parameters Lump soliton Mathematical analysis Nonlinear equations Periodic soliton Solitary waves Wave equations Wave interaction |
title | The N-soliton solution and localized wave interaction solutions of the (2+1)-dimensional generalized Hirota-Satsuma-Ito equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20N-soliton%20solution%20and%20localized%20wave%20interaction%20solutions%20of%20the%20(2+1)-dimensional%20generalized%20Hirota-Satsuma-Ito%20equation&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Liu,%20Yaqing&rft.date=2019-02-15&rft.volume=77&rft.issue=4&rft.spage=947&rft.epage=966&rft.pages=947-966&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2018.10.035&rft_dat=%3Cproquest_cross%3E2187001766%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187001766&rft_id=info:pmid/&rft_els_id=S0898122118306321&rfr_iscdi=true |