The N-soliton solution and localized wave interaction solutions of the (2+1)-dimensional generalized Hirota-Satsuma-Ito equation

In this paper, the N-soliton solution is constructed for the (2+1)-dimensional generalized Hirota–Satsuma–Ito equation, from which some localized waves such as line solitons, lumps, periodic solitons and their interactions are obtained by choosing special parameters. Especially, by selecting appropr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2019-02, Vol.77 (4), p.947-966
Hauptverfasser: Liu, Yaqing, Wen, Xiao-Yong, Wang, Deng-Shan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 966
container_issue 4
container_start_page 947
container_title Computers & mathematics with applications (1987)
container_volume 77
creator Liu, Yaqing
Wen, Xiao-Yong
Wang, Deng-Shan
description In this paper, the N-soliton solution is constructed for the (2+1)-dimensional generalized Hirota–Satsuma–Ito equation, from which some localized waves such as line solitons, lumps, periodic solitons and their interactions are obtained by choosing special parameters. Especially, by selecting appropriate parameters on the multi-soliton solutions, the two soliton can reduce to a periodic soliton or a lump soliton, the three soliton can reduce to the elastic interaction solution between a line soliton and a periodic soliton or the elastic interaction between a line soliton and a lump soliton, while the four soliton can reduce to elastic interaction solutions among two line solitons and a periodic soliton or the elastic interaction ones between two periodic solitons. Detailed behaviours of such solutions are illustrated analytically and graphically by analysing the influence of parameters. Finally, an inelastic interaction solution between a lump soliton and a line soliton is constructed via the ansatz method, and the relevant interaction and propagation characteristics are discussed graphically. The results obtained in this paper may be helpful for understanding the interaction phenomena of localized nonlinear waves in two-dimensional nonlinear wave equations.
doi_str_mv 10.1016/j.camwa.2018.10.035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2187001766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122118306321</els_id><sourcerecordid>2187001766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-7d2e735983bc7860464cd8d375da5e2b430950aa07a712519a6ed2bf12884a083</originalsourceid><addsrcrecordid>eNp9kL1OXDEQhS0UJDbAE9BYSpMo8mZs3x9vkSJCJCChUAC1NWvPJl7dvQbbFwQVjx4vS1qqGZ0558j-GDuRMJcgu2_rucPNI84VSFOVOeh2j82k6bXou858YDMwCyOkUvKAfcx5DQCNVjBjLzd_if8WOQ6hxJHXOZVQFxw9H6LDITyT54_4QDyMhRK61_N_X-ZxxUut-Ky-yi_Chw2Nueo48D80Vvsufx5SLCiuseRpg-KiRE73E24bjtj-CodMx2_zkN3-PLs5PReXV78uTn9cCqe1LKL3inrdLoxeut500HSN88brvvXYklo2GhYtIEKPvVStXGBHXi1XUhnTIBh9yD7teu9SvJ8oF7uOU6oPzVZVUACykqouvXO5FHNOtLJ3KWwwPVkJdovaru0rartFvRUr6pr6vktR_cBDoGSzCzQ68iGRK9bH8G7-H2uOiQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187001766</pqid></control><display><type>article</type><title>The N-soliton solution and localized wave interaction solutions of the (2+1)-dimensional generalized Hirota-Satsuma-Ito equation</title><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Liu, Yaqing ; Wen, Xiao-Yong ; Wang, Deng-Shan</creator><creatorcontrib>Liu, Yaqing ; Wen, Xiao-Yong ; Wang, Deng-Shan</creatorcontrib><description>In this paper, the N-soliton solution is constructed for the (2+1)-dimensional generalized Hirota–Satsuma–Ito equation, from which some localized waves such as line solitons, lumps, periodic solitons and their interactions are obtained by choosing special parameters. Especially, by selecting appropriate parameters on the multi-soliton solutions, the two soliton can reduce to a periodic soliton or a lump soliton, the three soliton can reduce to the elastic interaction solution between a line soliton and a periodic soliton or the elastic interaction between a line soliton and a lump soliton, while the four soliton can reduce to elastic interaction solutions among two line solitons and a periodic soliton or the elastic interaction ones between two periodic solitons. Detailed behaviours of such solutions are illustrated analytically and graphically by analysing the influence of parameters. Finally, an inelastic interaction solution between a lump soliton and a line soliton is constructed via the ansatz method, and the relevant interaction and propagation characteristics are discussed graphically. The results obtained in this paper may be helpful for understanding the interaction phenomena of localized nonlinear waves in two-dimensional nonlinear wave equations.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2018.10.035</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>[formula omitted]-soliton solution ; Generalized Hirota–Satsuma–Ito equation ; Interaction parameters ; Lump soliton ; Mathematical analysis ; Nonlinear equations ; Periodic soliton ; Solitary waves ; Wave equations ; Wave interaction</subject><ispartof>Computers &amp; mathematics with applications (1987), 2019-02, Vol.77 (4), p.947-966</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Feb 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-7d2e735983bc7860464cd8d375da5e2b430950aa07a712519a6ed2bf12884a083</citedby><cites>FETCH-LOGICAL-c331t-7d2e735983bc7860464cd8d375da5e2b430950aa07a712519a6ed2bf12884a083</cites><orcidid>0000-0003-1657-9064</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0898122118306321$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Liu, Yaqing</creatorcontrib><creatorcontrib>Wen, Xiao-Yong</creatorcontrib><creatorcontrib>Wang, Deng-Shan</creatorcontrib><title>The N-soliton solution and localized wave interaction solutions of the (2+1)-dimensional generalized Hirota-Satsuma-Ito equation</title><title>Computers &amp; mathematics with applications (1987)</title><description>In this paper, the N-soliton solution is constructed for the (2+1)-dimensional generalized Hirota–Satsuma–Ito equation, from which some localized waves such as line solitons, lumps, periodic solitons and their interactions are obtained by choosing special parameters. Especially, by selecting appropriate parameters on the multi-soliton solutions, the two soliton can reduce to a periodic soliton or a lump soliton, the three soliton can reduce to the elastic interaction solution between a line soliton and a periodic soliton or the elastic interaction between a line soliton and a lump soliton, while the four soliton can reduce to elastic interaction solutions among two line solitons and a periodic soliton or the elastic interaction ones between two periodic solitons. Detailed behaviours of such solutions are illustrated analytically and graphically by analysing the influence of parameters. Finally, an inelastic interaction solution between a lump soliton and a line soliton is constructed via the ansatz method, and the relevant interaction and propagation characteristics are discussed graphically. The results obtained in this paper may be helpful for understanding the interaction phenomena of localized nonlinear waves in two-dimensional nonlinear wave equations.</description><subject>[formula omitted]-soliton solution</subject><subject>Generalized Hirota–Satsuma–Ito equation</subject><subject>Interaction parameters</subject><subject>Lump soliton</subject><subject>Mathematical analysis</subject><subject>Nonlinear equations</subject><subject>Periodic soliton</subject><subject>Solitary waves</subject><subject>Wave equations</subject><subject>Wave interaction</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OXDEQhS0UJDbAE9BYSpMo8mZs3x9vkSJCJCChUAC1NWvPJl7dvQbbFwQVjx4vS1qqGZ0558j-GDuRMJcgu2_rucPNI84VSFOVOeh2j82k6bXou858YDMwCyOkUvKAfcx5DQCNVjBjLzd_if8WOQ6hxJHXOZVQFxw9H6LDITyT54_4QDyMhRK61_N_X-ZxxUut-Ky-yi_Chw2Nueo48D80Vvsufx5SLCiuseRpg-KiRE73E24bjtj-CodMx2_zkN3-PLs5PReXV78uTn9cCqe1LKL3inrdLoxeut500HSN88brvvXYklo2GhYtIEKPvVStXGBHXi1XUhnTIBh9yD7teu9SvJ8oF7uOU6oPzVZVUACykqouvXO5FHNOtLJ3KWwwPVkJdovaru0rartFvRUr6pr6vktR_cBDoGSzCzQ68iGRK9bH8G7-H2uOiQ0</recordid><startdate>20190215</startdate><enddate>20190215</enddate><creator>Liu, Yaqing</creator><creator>Wen, Xiao-Yong</creator><creator>Wang, Deng-Shan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1657-9064</orcidid></search><sort><creationdate>20190215</creationdate><title>The N-soliton solution and localized wave interaction solutions of the (2+1)-dimensional generalized Hirota-Satsuma-Ito equation</title><author>Liu, Yaqing ; Wen, Xiao-Yong ; Wang, Deng-Shan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-7d2e735983bc7860464cd8d375da5e2b430950aa07a712519a6ed2bf12884a083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>[formula omitted]-soliton solution</topic><topic>Generalized Hirota–Satsuma–Ito equation</topic><topic>Interaction parameters</topic><topic>Lump soliton</topic><topic>Mathematical analysis</topic><topic>Nonlinear equations</topic><topic>Periodic soliton</topic><topic>Solitary waves</topic><topic>Wave equations</topic><topic>Wave interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yaqing</creatorcontrib><creatorcontrib>Wen, Xiao-Yong</creatorcontrib><creatorcontrib>Wang, Deng-Shan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yaqing</au><au>Wen, Xiao-Yong</au><au>Wang, Deng-Shan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The N-soliton solution and localized wave interaction solutions of the (2+1)-dimensional generalized Hirota-Satsuma-Ito equation</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2019-02-15</date><risdate>2019</risdate><volume>77</volume><issue>4</issue><spage>947</spage><epage>966</epage><pages>947-966</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>In this paper, the N-soliton solution is constructed for the (2+1)-dimensional generalized Hirota–Satsuma–Ito equation, from which some localized waves such as line solitons, lumps, periodic solitons and their interactions are obtained by choosing special parameters. Especially, by selecting appropriate parameters on the multi-soliton solutions, the two soliton can reduce to a periodic soliton or a lump soliton, the three soliton can reduce to the elastic interaction solution between a line soliton and a periodic soliton or the elastic interaction between a line soliton and a lump soliton, while the four soliton can reduce to elastic interaction solutions among two line solitons and a periodic soliton or the elastic interaction ones between two periodic solitons. Detailed behaviours of such solutions are illustrated analytically and graphically by analysing the influence of parameters. Finally, an inelastic interaction solution between a lump soliton and a line soliton is constructed via the ansatz method, and the relevant interaction and propagation characteristics are discussed graphically. The results obtained in this paper may be helpful for understanding the interaction phenomena of localized nonlinear waves in two-dimensional nonlinear wave equations.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2018.10.035</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-1657-9064</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2019-02, Vol.77 (4), p.947-966
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_journals_2187001766
source Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects [formula omitted]-soliton solution
Generalized Hirota–Satsuma–Ito equation
Interaction parameters
Lump soliton
Mathematical analysis
Nonlinear equations
Periodic soliton
Solitary waves
Wave equations
Wave interaction
title The N-soliton solution and localized wave interaction solutions of the (2+1)-dimensional generalized Hirota-Satsuma-Ito equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20N-soliton%20solution%20and%20localized%20wave%20interaction%20solutions%20of%20the%20(2+1)-dimensional%20generalized%20Hirota-Satsuma-Ito%20equation&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Liu,%20Yaqing&rft.date=2019-02-15&rft.volume=77&rft.issue=4&rft.spage=947&rft.epage=966&rft.pages=947-966&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2018.10.035&rft_dat=%3Cproquest_cross%3E2187001766%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187001766&rft_id=info:pmid/&rft_els_id=S0898122118306321&rfr_iscdi=true