An integrated transparent, UV-filtering organohydrogel sensor via molecular-level ion conductive channels

Hydrogel-based strain sensors are promising for skin-like electronics. To satisfy the various requirements of wearable devices used for direct human contact, a hydrogel needs to possess transparent, stretchable, conductive, antifreezing and moisture-retention properties. However, preparation of hydr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (9), p.4525-4535
Hauptverfasser: Pan, Xiaofeng, Wang, Qinhua, Guo, Runsheng, Ni, Yonghao, Liu, Kai, Ouyang, Xinhua, Chen, Lihui, Huang, Liulian, Cao, Shilin, Xie, Mingying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4535
container_issue 9
container_start_page 4525
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 7
creator Pan, Xiaofeng
Wang, Qinhua
Guo, Runsheng
Ni, Yonghao
Liu, Kai
Ouyang, Xinhua
Chen, Lihui
Huang, Liulian
Cao, Shilin
Xie, Mingying
description Hydrogel-based strain sensors are promising for skin-like electronics. To satisfy the various requirements of wearable devices used for direct human contact, a hydrogel needs to possess transparent, stretchable, conductive, antifreezing and moisture-retention properties. However, preparation of hydrogels with these properties is challenging. Herein, we innovatively designed and fabricated a transparent, conductive polyvinyl alcohol-tannic acid@talc (PVA-TA@talc) organohydrogel via molecular-level ion conductive channels in ethylene glycol/H 2 O (EG/H 2 O), and this organohydrogel integrates excellent conductive, transparent, antifreezing, moisture-retention, toughness, and stretchable properties for the first time. Moreover, this organohydrogel possesses remarkable light filtering capabilities and can effectively filter ultraviolet (UV) light. Interestingly, this organohydrogel can act as a wearable dressing to protect skin from frostbite and ultraviolet radiation. Notably, based on molecular-level ion transport channels, this organohydrogel has great strain sensitivity (gauge factor ≈ 9.17, 0–1.2% strain) that enables recognition of limb movement, pulse, language, and handwriting. The organohydrogel can collect electromyography (EMG) signals as a bioelectrode and be applied to prepare a T-pen for controlling smartphones. In short, this novel organohydrogel has great application prospects for wearable electronics, and the strategy for the organohydrogel constructed via molecular-level ion conductive channels will open a new route for the preparation of multifunctional ionic organohydrogels.
doi_str_mv 10.1039/C8TA12360H
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2186956760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186956760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-31758cc5d8df14f5eef33dc93c885def74a2fcc75dd00ee4df7df69b1a8915ae3</originalsourceid><addsrcrecordid>eNpFUFFLwzAYDKLgmHvxFwR8E6tJ07TJ4xjqhIEvm68lJl-6jC6ZSTrYv7cy0Xu5gzvu4BC6peSREiafFmI9pyWryfICTUrCSdFUsr7800Jco1lKOzJCEFJLOUFu7rHzGbqoMhico_LpoCL4_IA3H4V1fYbofIdD7JQP25OJoYMeJ_ApRHx0Cu9DD3roVSx6OI6WCx7r4M2gszsC1lvlPfTpBl1Z1SeY_fIUbV6e14tlsXp_fVvMV4VmTOaC0YYLrbkRxtLKcgDLmNGSaSG4AdtUqrRaN9wYQgAqYxtja_lJlZCUK2BTdHfuPcTwNUDK7S4M0Y-TbUlFLXnd1GRM3Z9TOoaUItj2EN1exVNLSfvzZvv_JvsGcEJp2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186956760</pqid></control><display><type>article</type><title>An integrated transparent, UV-filtering organohydrogel sensor via molecular-level ion conductive channels</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Pan, Xiaofeng ; Wang, Qinhua ; Guo, Runsheng ; Ni, Yonghao ; Liu, Kai ; Ouyang, Xinhua ; Chen, Lihui ; Huang, Liulian ; Cao, Shilin ; Xie, Mingying</creator><creatorcontrib>Pan, Xiaofeng ; Wang, Qinhua ; Guo, Runsheng ; Ni, Yonghao ; Liu, Kai ; Ouyang, Xinhua ; Chen, Lihui ; Huang, Liulian ; Cao, Shilin ; Xie, Mingying</creatorcontrib><description>Hydrogel-based strain sensors are promising for skin-like electronics. To satisfy the various requirements of wearable devices used for direct human contact, a hydrogel needs to possess transparent, stretchable, conductive, antifreezing and moisture-retention properties. However, preparation of hydrogels with these properties is challenging. Herein, we innovatively designed and fabricated a transparent, conductive polyvinyl alcohol-tannic acid@talc (PVA-TA@talc) organohydrogel via molecular-level ion conductive channels in ethylene glycol/H 2 O (EG/H 2 O), and this organohydrogel integrates excellent conductive, transparent, antifreezing, moisture-retention, toughness, and stretchable properties for the first time. Moreover, this organohydrogel possesses remarkable light filtering capabilities and can effectively filter ultraviolet (UV) light. Interestingly, this organohydrogel can act as a wearable dressing to protect skin from frostbite and ultraviolet radiation. Notably, based on molecular-level ion transport channels, this organohydrogel has great strain sensitivity (gauge factor ≈ 9.17, 0–1.2% strain) that enables recognition of limb movement, pulse, language, and handwriting. The organohydrogel can collect electromyography (EMG) signals as a bioelectrode and be applied to prepare a T-pen for controlling smartphones. In short, this novel organohydrogel has great application prospects for wearable electronics, and the strategy for the organohydrogel constructed via molecular-level ion conductive channels will open a new route for the preparation of multifunctional ionic organohydrogels.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C8TA12360H</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alcohols ; Channels ; Conductivity ; Electromyography ; Electronics ; Ethylene glycol ; Filtration ; Frostbite ; Handwriting ; Handwriting recognition ; Hydrogels ; Ion transport ; Moisture ; Polyvinyl alcohol ; Properties (attributes) ; Retention ; Skin ; Smartphones ; Strain gauges ; Talc ; Tannic acid ; Ultraviolet radiation ; Wearable technology</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (9), p.4525-4535</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-31758cc5d8df14f5eef33dc93c885def74a2fcc75dd00ee4df7df69b1a8915ae3</citedby><cites>FETCH-LOGICAL-c339t-31758cc5d8df14f5eef33dc93c885def74a2fcc75dd00ee4df7df69b1a8915ae3</cites><orcidid>0000-0001-7833-2839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Pan, Xiaofeng</creatorcontrib><creatorcontrib>Wang, Qinhua</creatorcontrib><creatorcontrib>Guo, Runsheng</creatorcontrib><creatorcontrib>Ni, Yonghao</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Ouyang, Xinhua</creatorcontrib><creatorcontrib>Chen, Lihui</creatorcontrib><creatorcontrib>Huang, Liulian</creatorcontrib><creatorcontrib>Cao, Shilin</creatorcontrib><creatorcontrib>Xie, Mingying</creatorcontrib><title>An integrated transparent, UV-filtering organohydrogel sensor via molecular-level ion conductive channels</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Hydrogel-based strain sensors are promising for skin-like electronics. To satisfy the various requirements of wearable devices used for direct human contact, a hydrogel needs to possess transparent, stretchable, conductive, antifreezing and moisture-retention properties. However, preparation of hydrogels with these properties is challenging. Herein, we innovatively designed and fabricated a transparent, conductive polyvinyl alcohol-tannic acid@talc (PVA-TA@talc) organohydrogel via molecular-level ion conductive channels in ethylene glycol/H 2 O (EG/H 2 O), and this organohydrogel integrates excellent conductive, transparent, antifreezing, moisture-retention, toughness, and stretchable properties for the first time. Moreover, this organohydrogel possesses remarkable light filtering capabilities and can effectively filter ultraviolet (UV) light. Interestingly, this organohydrogel can act as a wearable dressing to protect skin from frostbite and ultraviolet radiation. Notably, based on molecular-level ion transport channels, this organohydrogel has great strain sensitivity (gauge factor ≈ 9.17, 0–1.2% strain) that enables recognition of limb movement, pulse, language, and handwriting. The organohydrogel can collect electromyography (EMG) signals as a bioelectrode and be applied to prepare a T-pen for controlling smartphones. In short, this novel organohydrogel has great application prospects for wearable electronics, and the strategy for the organohydrogel constructed via molecular-level ion conductive channels will open a new route for the preparation of multifunctional ionic organohydrogels.</description><subject>Alcohols</subject><subject>Channels</subject><subject>Conductivity</subject><subject>Electromyography</subject><subject>Electronics</subject><subject>Ethylene glycol</subject><subject>Filtration</subject><subject>Frostbite</subject><subject>Handwriting</subject><subject>Handwriting recognition</subject><subject>Hydrogels</subject><subject>Ion transport</subject><subject>Moisture</subject><subject>Polyvinyl alcohol</subject><subject>Properties (attributes)</subject><subject>Retention</subject><subject>Skin</subject><subject>Smartphones</subject><subject>Strain gauges</subject><subject>Talc</subject><subject>Tannic acid</subject><subject>Ultraviolet radiation</subject><subject>Wearable technology</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFUFFLwzAYDKLgmHvxFwR8E6tJ07TJ4xjqhIEvm68lJl-6jC6ZSTrYv7cy0Xu5gzvu4BC6peSREiafFmI9pyWryfICTUrCSdFUsr7800Jco1lKOzJCEFJLOUFu7rHzGbqoMhico_LpoCL4_IA3H4V1fYbofIdD7JQP25OJoYMeJ_ApRHx0Cu9DD3roVSx6OI6WCx7r4M2gszsC1lvlPfTpBl1Z1SeY_fIUbV6e14tlsXp_fVvMV4VmTOaC0YYLrbkRxtLKcgDLmNGSaSG4AdtUqrRaN9wYQgAqYxtja_lJlZCUK2BTdHfuPcTwNUDK7S4M0Y-TbUlFLXnd1GRM3Z9TOoaUItj2EN1exVNLSfvzZvv_JvsGcEJp2g</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Pan, Xiaofeng</creator><creator>Wang, Qinhua</creator><creator>Guo, Runsheng</creator><creator>Ni, Yonghao</creator><creator>Liu, Kai</creator><creator>Ouyang, Xinhua</creator><creator>Chen, Lihui</creator><creator>Huang, Liulian</creator><creator>Cao, Shilin</creator><creator>Xie, Mingying</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7833-2839</orcidid></search><sort><creationdate>2019</creationdate><title>An integrated transparent, UV-filtering organohydrogel sensor via molecular-level ion conductive channels</title><author>Pan, Xiaofeng ; Wang, Qinhua ; Guo, Runsheng ; Ni, Yonghao ; Liu, Kai ; Ouyang, Xinhua ; Chen, Lihui ; Huang, Liulian ; Cao, Shilin ; Xie, Mingying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-31758cc5d8df14f5eef33dc93c885def74a2fcc75dd00ee4df7df69b1a8915ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alcohols</topic><topic>Channels</topic><topic>Conductivity</topic><topic>Electromyography</topic><topic>Electronics</topic><topic>Ethylene glycol</topic><topic>Filtration</topic><topic>Frostbite</topic><topic>Handwriting</topic><topic>Handwriting recognition</topic><topic>Hydrogels</topic><topic>Ion transport</topic><topic>Moisture</topic><topic>Polyvinyl alcohol</topic><topic>Properties (attributes)</topic><topic>Retention</topic><topic>Skin</topic><topic>Smartphones</topic><topic>Strain gauges</topic><topic>Talc</topic><topic>Tannic acid</topic><topic>Ultraviolet radiation</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Xiaofeng</creatorcontrib><creatorcontrib>Wang, Qinhua</creatorcontrib><creatorcontrib>Guo, Runsheng</creatorcontrib><creatorcontrib>Ni, Yonghao</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Ouyang, Xinhua</creatorcontrib><creatorcontrib>Chen, Lihui</creatorcontrib><creatorcontrib>Huang, Liulian</creatorcontrib><creatorcontrib>Cao, Shilin</creatorcontrib><creatorcontrib>Xie, Mingying</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Xiaofeng</au><au>Wang, Qinhua</au><au>Guo, Runsheng</au><au>Ni, Yonghao</au><au>Liu, Kai</au><au>Ouyang, Xinhua</au><au>Chen, Lihui</au><au>Huang, Liulian</au><au>Cao, Shilin</au><au>Xie, Mingying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An integrated transparent, UV-filtering organohydrogel sensor via molecular-level ion conductive channels</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>9</issue><spage>4525</spage><epage>4535</epage><pages>4525-4535</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Hydrogel-based strain sensors are promising for skin-like electronics. To satisfy the various requirements of wearable devices used for direct human contact, a hydrogel needs to possess transparent, stretchable, conductive, antifreezing and moisture-retention properties. However, preparation of hydrogels with these properties is challenging. Herein, we innovatively designed and fabricated a transparent, conductive polyvinyl alcohol-tannic acid@talc (PVA-TA@talc) organohydrogel via molecular-level ion conductive channels in ethylene glycol/H 2 O (EG/H 2 O), and this organohydrogel integrates excellent conductive, transparent, antifreezing, moisture-retention, toughness, and stretchable properties for the first time. Moreover, this organohydrogel possesses remarkable light filtering capabilities and can effectively filter ultraviolet (UV) light. Interestingly, this organohydrogel can act as a wearable dressing to protect skin from frostbite and ultraviolet radiation. Notably, based on molecular-level ion transport channels, this organohydrogel has great strain sensitivity (gauge factor ≈ 9.17, 0–1.2% strain) that enables recognition of limb movement, pulse, language, and handwriting. The organohydrogel can collect electromyography (EMG) signals as a bioelectrode and be applied to prepare a T-pen for controlling smartphones. In short, this novel organohydrogel has great application prospects for wearable electronics, and the strategy for the organohydrogel constructed via molecular-level ion conductive channels will open a new route for the preparation of multifunctional ionic organohydrogels.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C8TA12360H</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7833-2839</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (9), p.4525-4535
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2186956760
source Royal Society Of Chemistry Journals 2008-
subjects Alcohols
Channels
Conductivity
Electromyography
Electronics
Ethylene glycol
Filtration
Frostbite
Handwriting
Handwriting recognition
Hydrogels
Ion transport
Moisture
Polyvinyl alcohol
Properties (attributes)
Retention
Skin
Smartphones
Strain gauges
Talc
Tannic acid
Ultraviolet radiation
Wearable technology
title An integrated transparent, UV-filtering organohydrogel sensor via molecular-level ion conductive channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A22%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20integrated%20transparent,%20UV-filtering%20organohydrogel%20sensor%20via%20molecular-level%20ion%20conductive%20channels&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Pan,%20Xiaofeng&rft.date=2019&rft.volume=7&rft.issue=9&rft.spage=4525&rft.epage=4535&rft.pages=4525-4535&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C8TA12360H&rft_dat=%3Cproquest_cross%3E2186956760%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186956760&rft_id=info:pmid/&rfr_iscdi=true