An integrated transparent, UV-filtering organohydrogel sensor via molecular-level ion conductive channels
Hydrogel-based strain sensors are promising for skin-like electronics. To satisfy the various requirements of wearable devices used for direct human contact, a hydrogel needs to possess transparent, stretchable, conductive, antifreezing and moisture-retention properties. However, preparation of hydr...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (9), p.4525-4535 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4535 |
---|---|
container_issue | 9 |
container_start_page | 4525 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 7 |
creator | Pan, Xiaofeng Wang, Qinhua Guo, Runsheng Ni, Yonghao Liu, Kai Ouyang, Xinhua Chen, Lihui Huang, Liulian Cao, Shilin Xie, Mingying |
description | Hydrogel-based strain sensors are promising for skin-like electronics. To satisfy the various requirements of wearable devices used for direct human contact, a hydrogel needs to possess transparent, stretchable, conductive, antifreezing and moisture-retention properties. However, preparation of hydrogels with these properties is challenging. Herein, we innovatively designed and fabricated a transparent, conductive polyvinyl alcohol-tannic acid@talc (PVA-TA@talc) organohydrogel
via
molecular-level ion conductive channels in ethylene glycol/H
2
O (EG/H
2
O), and this organohydrogel integrates excellent conductive, transparent, antifreezing, moisture-retention, toughness, and stretchable properties for the first time. Moreover, this organohydrogel possesses remarkable light filtering capabilities and can effectively filter ultraviolet (UV) light. Interestingly, this organohydrogel can act as a wearable dressing to protect skin from frostbite and ultraviolet radiation. Notably, based on molecular-level ion transport channels, this organohydrogel has great strain sensitivity (gauge factor ≈ 9.17, 0–1.2% strain) that enables recognition of limb movement, pulse, language, and handwriting. The organohydrogel can collect electromyography (EMG) signals as a bioelectrode and be applied to prepare a T-pen for controlling smartphones. In short, this novel organohydrogel has great application prospects for wearable electronics, and the strategy for the organohydrogel constructed
via
molecular-level ion conductive channels will open a new route for the preparation of multifunctional ionic organohydrogels. |
doi_str_mv | 10.1039/C8TA12360H |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2186956760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186956760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-31758cc5d8df14f5eef33dc93c885def74a2fcc75dd00ee4df7df69b1a8915ae3</originalsourceid><addsrcrecordid>eNpFUFFLwzAYDKLgmHvxFwR8E6tJ07TJ4xjqhIEvm68lJl-6jC6ZSTrYv7cy0Xu5gzvu4BC6peSREiafFmI9pyWryfICTUrCSdFUsr7800Jco1lKOzJCEFJLOUFu7rHzGbqoMhico_LpoCL4_IA3H4V1fYbofIdD7JQP25OJoYMeJ_ApRHx0Cu9DD3roVSx6OI6WCx7r4M2gszsC1lvlPfTpBl1Z1SeY_fIUbV6e14tlsXp_fVvMV4VmTOaC0YYLrbkRxtLKcgDLmNGSaSG4AdtUqrRaN9wYQgAqYxtja_lJlZCUK2BTdHfuPcTwNUDK7S4M0Y-TbUlFLXnd1GRM3Z9TOoaUItj2EN1exVNLSfvzZvv_JvsGcEJp2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186956760</pqid></control><display><type>article</type><title>An integrated transparent, UV-filtering organohydrogel sensor via molecular-level ion conductive channels</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Pan, Xiaofeng ; Wang, Qinhua ; Guo, Runsheng ; Ni, Yonghao ; Liu, Kai ; Ouyang, Xinhua ; Chen, Lihui ; Huang, Liulian ; Cao, Shilin ; Xie, Mingying</creator><creatorcontrib>Pan, Xiaofeng ; Wang, Qinhua ; Guo, Runsheng ; Ni, Yonghao ; Liu, Kai ; Ouyang, Xinhua ; Chen, Lihui ; Huang, Liulian ; Cao, Shilin ; Xie, Mingying</creatorcontrib><description>Hydrogel-based strain sensors are promising for skin-like electronics. To satisfy the various requirements of wearable devices used for direct human contact, a hydrogel needs to possess transparent, stretchable, conductive, antifreezing and moisture-retention properties. However, preparation of hydrogels with these properties is challenging. Herein, we innovatively designed and fabricated a transparent, conductive polyvinyl alcohol-tannic acid@talc (PVA-TA@talc) organohydrogel
via
molecular-level ion conductive channels in ethylene glycol/H
2
O (EG/H
2
O), and this organohydrogel integrates excellent conductive, transparent, antifreezing, moisture-retention, toughness, and stretchable properties for the first time. Moreover, this organohydrogel possesses remarkable light filtering capabilities and can effectively filter ultraviolet (UV) light. Interestingly, this organohydrogel can act as a wearable dressing to protect skin from frostbite and ultraviolet radiation. Notably, based on molecular-level ion transport channels, this organohydrogel has great strain sensitivity (gauge factor ≈ 9.17, 0–1.2% strain) that enables recognition of limb movement, pulse, language, and handwriting. The organohydrogel can collect electromyography (EMG) signals as a bioelectrode and be applied to prepare a T-pen for controlling smartphones. In short, this novel organohydrogel has great application prospects for wearable electronics, and the strategy for the organohydrogel constructed
via
molecular-level ion conductive channels will open a new route for the preparation of multifunctional ionic organohydrogels.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C8TA12360H</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alcohols ; Channels ; Conductivity ; Electromyography ; Electronics ; Ethylene glycol ; Filtration ; Frostbite ; Handwriting ; Handwriting recognition ; Hydrogels ; Ion transport ; Moisture ; Polyvinyl alcohol ; Properties (attributes) ; Retention ; Skin ; Smartphones ; Strain gauges ; Talc ; Tannic acid ; Ultraviolet radiation ; Wearable technology</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (9), p.4525-4535</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-31758cc5d8df14f5eef33dc93c885def74a2fcc75dd00ee4df7df69b1a8915ae3</citedby><cites>FETCH-LOGICAL-c339t-31758cc5d8df14f5eef33dc93c885def74a2fcc75dd00ee4df7df69b1a8915ae3</cites><orcidid>0000-0001-7833-2839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>Pan, Xiaofeng</creatorcontrib><creatorcontrib>Wang, Qinhua</creatorcontrib><creatorcontrib>Guo, Runsheng</creatorcontrib><creatorcontrib>Ni, Yonghao</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Ouyang, Xinhua</creatorcontrib><creatorcontrib>Chen, Lihui</creatorcontrib><creatorcontrib>Huang, Liulian</creatorcontrib><creatorcontrib>Cao, Shilin</creatorcontrib><creatorcontrib>Xie, Mingying</creatorcontrib><title>An integrated transparent, UV-filtering organohydrogel sensor via molecular-level ion conductive channels</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Hydrogel-based strain sensors are promising for skin-like electronics. To satisfy the various requirements of wearable devices used for direct human contact, a hydrogel needs to possess transparent, stretchable, conductive, antifreezing and moisture-retention properties. However, preparation of hydrogels with these properties is challenging. Herein, we innovatively designed and fabricated a transparent, conductive polyvinyl alcohol-tannic acid@talc (PVA-TA@talc) organohydrogel
via
molecular-level ion conductive channels in ethylene glycol/H
2
O (EG/H
2
O), and this organohydrogel integrates excellent conductive, transparent, antifreezing, moisture-retention, toughness, and stretchable properties for the first time. Moreover, this organohydrogel possesses remarkable light filtering capabilities and can effectively filter ultraviolet (UV) light. Interestingly, this organohydrogel can act as a wearable dressing to protect skin from frostbite and ultraviolet radiation. Notably, based on molecular-level ion transport channels, this organohydrogel has great strain sensitivity (gauge factor ≈ 9.17, 0–1.2% strain) that enables recognition of limb movement, pulse, language, and handwriting. The organohydrogel can collect electromyography (EMG) signals as a bioelectrode and be applied to prepare a T-pen for controlling smartphones. In short, this novel organohydrogel has great application prospects for wearable electronics, and the strategy for the organohydrogel constructed
via
molecular-level ion conductive channels will open a new route for the preparation of multifunctional ionic organohydrogels.</description><subject>Alcohols</subject><subject>Channels</subject><subject>Conductivity</subject><subject>Electromyography</subject><subject>Electronics</subject><subject>Ethylene glycol</subject><subject>Filtration</subject><subject>Frostbite</subject><subject>Handwriting</subject><subject>Handwriting recognition</subject><subject>Hydrogels</subject><subject>Ion transport</subject><subject>Moisture</subject><subject>Polyvinyl alcohol</subject><subject>Properties (attributes)</subject><subject>Retention</subject><subject>Skin</subject><subject>Smartphones</subject><subject>Strain gauges</subject><subject>Talc</subject><subject>Tannic acid</subject><subject>Ultraviolet radiation</subject><subject>Wearable technology</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFUFFLwzAYDKLgmHvxFwR8E6tJ07TJ4xjqhIEvm68lJl-6jC6ZSTrYv7cy0Xu5gzvu4BC6peSREiafFmI9pyWryfICTUrCSdFUsr7800Jco1lKOzJCEFJLOUFu7rHzGbqoMhico_LpoCL4_IA3H4V1fYbofIdD7JQP25OJoYMeJ_ApRHx0Cu9DD3roVSx6OI6WCx7r4M2gszsC1lvlPfTpBl1Z1SeY_fIUbV6e14tlsXp_fVvMV4VmTOaC0YYLrbkRxtLKcgDLmNGSaSG4AdtUqrRaN9wYQgAqYxtja_lJlZCUK2BTdHfuPcTwNUDK7S4M0Y-TbUlFLXnd1GRM3Z9TOoaUItj2EN1exVNLSfvzZvv_JvsGcEJp2g</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Pan, Xiaofeng</creator><creator>Wang, Qinhua</creator><creator>Guo, Runsheng</creator><creator>Ni, Yonghao</creator><creator>Liu, Kai</creator><creator>Ouyang, Xinhua</creator><creator>Chen, Lihui</creator><creator>Huang, Liulian</creator><creator>Cao, Shilin</creator><creator>Xie, Mingying</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-7833-2839</orcidid></search><sort><creationdate>2019</creationdate><title>An integrated transparent, UV-filtering organohydrogel sensor via molecular-level ion conductive channels</title><author>Pan, Xiaofeng ; Wang, Qinhua ; Guo, Runsheng ; Ni, Yonghao ; Liu, Kai ; Ouyang, Xinhua ; Chen, Lihui ; Huang, Liulian ; Cao, Shilin ; Xie, Mingying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-31758cc5d8df14f5eef33dc93c885def74a2fcc75dd00ee4df7df69b1a8915ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alcohols</topic><topic>Channels</topic><topic>Conductivity</topic><topic>Electromyography</topic><topic>Electronics</topic><topic>Ethylene glycol</topic><topic>Filtration</topic><topic>Frostbite</topic><topic>Handwriting</topic><topic>Handwriting recognition</topic><topic>Hydrogels</topic><topic>Ion transport</topic><topic>Moisture</topic><topic>Polyvinyl alcohol</topic><topic>Properties (attributes)</topic><topic>Retention</topic><topic>Skin</topic><topic>Smartphones</topic><topic>Strain gauges</topic><topic>Talc</topic><topic>Tannic acid</topic><topic>Ultraviolet radiation</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Xiaofeng</creatorcontrib><creatorcontrib>Wang, Qinhua</creatorcontrib><creatorcontrib>Guo, Runsheng</creatorcontrib><creatorcontrib>Ni, Yonghao</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Ouyang, Xinhua</creatorcontrib><creatorcontrib>Chen, Lihui</creatorcontrib><creatorcontrib>Huang, Liulian</creatorcontrib><creatorcontrib>Cao, Shilin</creatorcontrib><creatorcontrib>Xie, Mingying</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Xiaofeng</au><au>Wang, Qinhua</au><au>Guo, Runsheng</au><au>Ni, Yonghao</au><au>Liu, Kai</au><au>Ouyang, Xinhua</au><au>Chen, Lihui</au><au>Huang, Liulian</au><au>Cao, Shilin</au><au>Xie, Mingying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An integrated transparent, UV-filtering organohydrogel sensor via molecular-level ion conductive channels</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>9</issue><spage>4525</spage><epage>4535</epage><pages>4525-4535</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Hydrogel-based strain sensors are promising for skin-like electronics. To satisfy the various requirements of wearable devices used for direct human contact, a hydrogel needs to possess transparent, stretchable, conductive, antifreezing and moisture-retention properties. However, preparation of hydrogels with these properties is challenging. Herein, we innovatively designed and fabricated a transparent, conductive polyvinyl alcohol-tannic acid@talc (PVA-TA@talc) organohydrogel
via
molecular-level ion conductive channels in ethylene glycol/H
2
O (EG/H
2
O), and this organohydrogel integrates excellent conductive, transparent, antifreezing, moisture-retention, toughness, and stretchable properties for the first time. Moreover, this organohydrogel possesses remarkable light filtering capabilities and can effectively filter ultraviolet (UV) light. Interestingly, this organohydrogel can act as a wearable dressing to protect skin from frostbite and ultraviolet radiation. Notably, based on molecular-level ion transport channels, this organohydrogel has great strain sensitivity (gauge factor ≈ 9.17, 0–1.2% strain) that enables recognition of limb movement, pulse, language, and handwriting. The organohydrogel can collect electromyography (EMG) signals as a bioelectrode and be applied to prepare a T-pen for controlling smartphones. In short, this novel organohydrogel has great application prospects for wearable electronics, and the strategy for the organohydrogel constructed
via
molecular-level ion conductive channels will open a new route for the preparation of multifunctional ionic organohydrogels.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C8TA12360H</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7833-2839</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (9), p.4525-4535 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2186956760 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Alcohols Channels Conductivity Electromyography Electronics Ethylene glycol Filtration Frostbite Handwriting Handwriting recognition Hydrogels Ion transport Moisture Polyvinyl alcohol Properties (attributes) Retention Skin Smartphones Strain gauges Talc Tannic acid Ultraviolet radiation Wearable technology |
title | An integrated transparent, UV-filtering organohydrogel sensor via molecular-level ion conductive channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A22%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20integrated%20transparent,%20UV-filtering%20organohydrogel%20sensor%20via%20molecular-level%20ion%20conductive%20channels&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Pan,%20Xiaofeng&rft.date=2019&rft.volume=7&rft.issue=9&rft.spage=4525&rft.epage=4535&rft.pages=4525-4535&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C8TA12360H&rft_dat=%3Cproquest_cross%3E2186956760%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186956760&rft_id=info:pmid/&rfr_iscdi=true |