Thermal atomic layer deposition of AlOxNy thin films for surface passivation of nano-textured flexible silicon

Aluminum oxynitride (AlOxNy) films with different nitrogen concentration are prepared by thermal atomic layer deposition (ALD) for flexible nano-textured silicon (NT-Si) surface passivation. The AlOxNy films are shown to exhibit a homogeneous nitrogen-doping profile and the presence of an adequate a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2019-05, Vol.193, p.231-236
Hauptverfasser: Parashar, Piyush K., Kinnunen, S.A., Sajavaara, T., Toppari, J. Jussi, Komarala, Vamsi K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 236
container_issue
container_start_page 231
container_title Solar energy materials and solar cells
container_volume 193
creator Parashar, Piyush K.
Kinnunen, S.A.
Sajavaara, T.
Toppari, J. Jussi
Komarala, Vamsi K.
description Aluminum oxynitride (AlOxNy) films with different nitrogen concentration are prepared by thermal atomic layer deposition (ALD) for flexible nano-textured silicon (NT-Si) surface passivation. The AlOxNy films are shown to exhibit a homogeneous nitrogen-doping profile and the presence of an adequate amount of hydrogen, which is investigated by Time-of-Fight Elastic Recoil Detection Analysis (ToF-ERDA). The effective minority carrier lifetimes are measured after the NT-Si surface passivation; the minimum surface recombination velocity (SRV) of 5 cm-s−1 is achieved with the AlOxNy film in comparison to the Al2O3 and AlN films (SRV of 7–9 cm-s−1). The better SRV with AlOxNy film is due to the collective effect of field-effect passivation by the presence of fixed negative charges, and chemical passivation by the presence of hydrogen within the film. The capacitance-voltage, and conductance measurements also are carried out using metal-oxide-semiconductor structure to determine the fixed negative charge density (Ni,ox), and defect density of states (Dit) in the AlOxNy films. The better surface passivation is attributed to unusually large Ni,ox of ~6.07 × 1012 cm−2, and minimal Dit of ~1.01 × 1011 cm−2-eV−1 owing to the saturation of Si dangling bonds by the hydrogen within the AlOxNy film matrix after the annealing step. •Superior surface passivation of flexible nano-textured silicon demonstrated by ALD grown Aluminum oxynitride (AlOxNy) films.•Presence of hydrogen and homogeneous nitrogen-doping profile in AlOxNy film investigated by the ToF-ERDA.•Minimum surface recombination velocity of ~5 cm‐s−1 achieved from silicon surface with AlOxNy passivation films.•Hydrogen and nitrogen ions’ negative charge in the film provided chemical and field-effect passivation, respectively, on the silicon surface.
doi_str_mv 10.1016/j.solmat.2019.01.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2186793070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024819300285</els_id><sourcerecordid>2186793070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-51704bbf063a773572d380652933cc02c5a2448a631b324059a006468458915c3</originalsourceid><addsrcrecordid>eNp9kMtqwzAUREVpoenjD7oQdO306mHZ2hRC6AtCs0nXQpFloiBbqaSE5O_r4HZbGJjNzFzuQeiBwJQAEU_baQq-03lKgcgpkEHyAk1IXcmCMVlfoglIWhVAeX2NblLaAgAVjE9Qv9rY2GmPdQ6dM9jrk424sbuQXHahx6HFM788fp5w3rget853Cbch4rSPrTYW73RK7qD_wr3uQ5HtMe-jbXDr7dGtvcXJeWdCf4euWu2Tvf_1W_T1-rKavxeL5dvHfLYoDBU8FyWpgK_XLQimq4qVFW1YDaKkkjFjgJpSU85rLRhZM8qhlBpAcFHzspakNOwWPY67uxi-9zZltQ372A8nFSW1qCSDCoYUH1MmhpSibdUuuk7HkyKgzmTVVo1k1ZmsAjJIDrXnsWaHDw7ORpWMs72xjYvWZNUE9__AD4s_g3I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186793070</pqid></control><display><type>article</type><title>Thermal atomic layer deposition of AlOxNy thin films for surface passivation of nano-textured flexible silicon</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Parashar, Piyush K. ; Kinnunen, S.A. ; Sajavaara, T. ; Toppari, J. Jussi ; Komarala, Vamsi K.</creator><creatorcontrib>Parashar, Piyush K. ; Kinnunen, S.A. ; Sajavaara, T. ; Toppari, J. Jussi ; Komarala, Vamsi K.</creatorcontrib><description>Aluminum oxynitride (AlOxNy) films with different nitrogen concentration are prepared by thermal atomic layer deposition (ALD) for flexible nano-textured silicon (NT-Si) surface passivation. The AlOxNy films are shown to exhibit a homogeneous nitrogen-doping profile and the presence of an adequate amount of hydrogen, which is investigated by Time-of-Fight Elastic Recoil Detection Analysis (ToF-ERDA). The effective minority carrier lifetimes are measured after the NT-Si surface passivation; the minimum surface recombination velocity (SRV) of 5 cm-s−1 is achieved with the AlOxNy film in comparison to the Al2O3 and AlN films (SRV of 7–9 cm-s−1). The better SRV with AlOxNy film is due to the collective effect of field-effect passivation by the presence of fixed negative charges, and chemical passivation by the presence of hydrogen within the film. The capacitance-voltage, and conductance measurements also are carried out using metal-oxide-semiconductor structure to determine the fixed negative charge density (Ni,ox), and defect density of states (Dit) in the AlOxNy films. The better surface passivation is attributed to unusually large Ni,ox of ~6.07 × 1012 cm−2, and minimal Dit of ~1.01 × 1011 cm−2-eV−1 owing to the saturation of Si dangling bonds by the hydrogen within the AlOxNy film matrix after the annealing step. •Superior surface passivation of flexible nano-textured silicon demonstrated by ALD grown Aluminum oxynitride (AlOxNy) films.•Presence of hydrogen and homogeneous nitrogen-doping profile in AlOxNy film investigated by the ToF-ERDA.•Minimum surface recombination velocity of ~5 cm‐s−1 achieved from silicon surface with AlOxNy passivation films.•Hydrogen and nitrogen ions’ negative charge in the film provided chemical and field-effect passivation, respectively, on the silicon surface.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2019.01.019</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aluminum ; Aluminum oxide ; Aluminum oxynitride ; Atomic layer epitaxy ; Black flexible silicon ; Capacitance ; Charge density ; Conductance ; Deposition ; Elastic analysis ; Hydrogen ; Metal oxides ; Minority carriers ; Nickel ; Nitrogen ; Organic chemistry ; Passivity ; Recoil ; Recombination ; Resistance ; Silicon ; Surface passivation ; Thermal atomic layer deposition ; Thin films ; Time-of-flight elastic recoil detection analysis (ToF-ERDA)</subject><ispartof>Solar energy materials and solar cells, 2019-05, Vol.193, p.231-236</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-51704bbf063a773572d380652933cc02c5a2448a631b324059a006468458915c3</citedby><cites>FETCH-LOGICAL-c264t-51704bbf063a773572d380652933cc02c5a2448a631b324059a006468458915c3</cites><orcidid>0000-0003-2235-7441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927024819300285$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Parashar, Piyush K.</creatorcontrib><creatorcontrib>Kinnunen, S.A.</creatorcontrib><creatorcontrib>Sajavaara, T.</creatorcontrib><creatorcontrib>Toppari, J. Jussi</creatorcontrib><creatorcontrib>Komarala, Vamsi K.</creatorcontrib><title>Thermal atomic layer deposition of AlOxNy thin films for surface passivation of nano-textured flexible silicon</title><title>Solar energy materials and solar cells</title><description>Aluminum oxynitride (AlOxNy) films with different nitrogen concentration are prepared by thermal atomic layer deposition (ALD) for flexible nano-textured silicon (NT-Si) surface passivation. The AlOxNy films are shown to exhibit a homogeneous nitrogen-doping profile and the presence of an adequate amount of hydrogen, which is investigated by Time-of-Fight Elastic Recoil Detection Analysis (ToF-ERDA). The effective minority carrier lifetimes are measured after the NT-Si surface passivation; the minimum surface recombination velocity (SRV) of 5 cm-s−1 is achieved with the AlOxNy film in comparison to the Al2O3 and AlN films (SRV of 7–9 cm-s−1). The better SRV with AlOxNy film is due to the collective effect of field-effect passivation by the presence of fixed negative charges, and chemical passivation by the presence of hydrogen within the film. The capacitance-voltage, and conductance measurements also are carried out using metal-oxide-semiconductor structure to determine the fixed negative charge density (Ni,ox), and defect density of states (Dit) in the AlOxNy films. The better surface passivation is attributed to unusually large Ni,ox of ~6.07 × 1012 cm−2, and minimal Dit of ~1.01 × 1011 cm−2-eV−1 owing to the saturation of Si dangling bonds by the hydrogen within the AlOxNy film matrix after the annealing step. •Superior surface passivation of flexible nano-textured silicon demonstrated by ALD grown Aluminum oxynitride (AlOxNy) films.•Presence of hydrogen and homogeneous nitrogen-doping profile in AlOxNy film investigated by the ToF-ERDA.•Minimum surface recombination velocity of ~5 cm‐s−1 achieved from silicon surface with AlOxNy passivation films.•Hydrogen and nitrogen ions’ negative charge in the film provided chemical and field-effect passivation, respectively, on the silicon surface.</description><subject>Aluminum</subject><subject>Aluminum oxide</subject><subject>Aluminum oxynitride</subject><subject>Atomic layer epitaxy</subject><subject>Black flexible silicon</subject><subject>Capacitance</subject><subject>Charge density</subject><subject>Conductance</subject><subject>Deposition</subject><subject>Elastic analysis</subject><subject>Hydrogen</subject><subject>Metal oxides</subject><subject>Minority carriers</subject><subject>Nickel</subject><subject>Nitrogen</subject><subject>Organic chemistry</subject><subject>Passivity</subject><subject>Recoil</subject><subject>Recombination</subject><subject>Resistance</subject><subject>Silicon</subject><subject>Surface passivation</subject><subject>Thermal atomic layer deposition</subject><subject>Thin films</subject><subject>Time-of-flight elastic recoil detection analysis (ToF-ERDA)</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAUREVpoenjD7oQdO306mHZ2hRC6AtCs0nXQpFloiBbqaSE5O_r4HZbGJjNzFzuQeiBwJQAEU_baQq-03lKgcgpkEHyAk1IXcmCMVlfoglIWhVAeX2NblLaAgAVjE9Qv9rY2GmPdQ6dM9jrk424sbuQXHahx6HFM788fp5w3rget853Cbch4rSPrTYW73RK7qD_wr3uQ5HtMe-jbXDr7dGtvcXJeWdCf4euWu2Tvf_1W_T1-rKavxeL5dvHfLYoDBU8FyWpgK_XLQimq4qVFW1YDaKkkjFjgJpSU85rLRhZM8qhlBpAcFHzspakNOwWPY67uxi-9zZltQ372A8nFSW1qCSDCoYUH1MmhpSibdUuuk7HkyKgzmTVVo1k1ZmsAjJIDrXnsWaHDw7ORpWMs72xjYvWZNUE9__AD4s_g3I</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Parashar, Piyush K.</creator><creator>Kinnunen, S.A.</creator><creator>Sajavaara, T.</creator><creator>Toppari, J. Jussi</creator><creator>Komarala, Vamsi K.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2235-7441</orcidid></search><sort><creationdate>201905</creationdate><title>Thermal atomic layer deposition of AlOxNy thin films for surface passivation of nano-textured flexible silicon</title><author>Parashar, Piyush K. ; Kinnunen, S.A. ; Sajavaara, T. ; Toppari, J. Jussi ; Komarala, Vamsi K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-51704bbf063a773572d380652933cc02c5a2448a631b324059a006468458915c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum</topic><topic>Aluminum oxide</topic><topic>Aluminum oxynitride</topic><topic>Atomic layer epitaxy</topic><topic>Black flexible silicon</topic><topic>Capacitance</topic><topic>Charge density</topic><topic>Conductance</topic><topic>Deposition</topic><topic>Elastic analysis</topic><topic>Hydrogen</topic><topic>Metal oxides</topic><topic>Minority carriers</topic><topic>Nickel</topic><topic>Nitrogen</topic><topic>Organic chemistry</topic><topic>Passivity</topic><topic>Recoil</topic><topic>Recombination</topic><topic>Resistance</topic><topic>Silicon</topic><topic>Surface passivation</topic><topic>Thermal atomic layer deposition</topic><topic>Thin films</topic><topic>Time-of-flight elastic recoil detection analysis (ToF-ERDA)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parashar, Piyush K.</creatorcontrib><creatorcontrib>Kinnunen, S.A.</creatorcontrib><creatorcontrib>Sajavaara, T.</creatorcontrib><creatorcontrib>Toppari, J. Jussi</creatorcontrib><creatorcontrib>Komarala, Vamsi K.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parashar, Piyush K.</au><au>Kinnunen, S.A.</au><au>Sajavaara, T.</au><au>Toppari, J. Jussi</au><au>Komarala, Vamsi K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal atomic layer deposition of AlOxNy thin films for surface passivation of nano-textured flexible silicon</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2019-05</date><risdate>2019</risdate><volume>193</volume><spage>231</spage><epage>236</epage><pages>231-236</pages><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Aluminum oxynitride (AlOxNy) films with different nitrogen concentration are prepared by thermal atomic layer deposition (ALD) for flexible nano-textured silicon (NT-Si) surface passivation. The AlOxNy films are shown to exhibit a homogeneous nitrogen-doping profile and the presence of an adequate amount of hydrogen, which is investigated by Time-of-Fight Elastic Recoil Detection Analysis (ToF-ERDA). The effective minority carrier lifetimes are measured after the NT-Si surface passivation; the minimum surface recombination velocity (SRV) of 5 cm-s−1 is achieved with the AlOxNy film in comparison to the Al2O3 and AlN films (SRV of 7–9 cm-s−1). The better SRV with AlOxNy film is due to the collective effect of field-effect passivation by the presence of fixed negative charges, and chemical passivation by the presence of hydrogen within the film. The capacitance-voltage, and conductance measurements also are carried out using metal-oxide-semiconductor structure to determine the fixed negative charge density (Ni,ox), and defect density of states (Dit) in the AlOxNy films. The better surface passivation is attributed to unusually large Ni,ox of ~6.07 × 1012 cm−2, and minimal Dit of ~1.01 × 1011 cm−2-eV−1 owing to the saturation of Si dangling bonds by the hydrogen within the AlOxNy film matrix after the annealing step. •Superior surface passivation of flexible nano-textured silicon demonstrated by ALD grown Aluminum oxynitride (AlOxNy) films.•Presence of hydrogen and homogeneous nitrogen-doping profile in AlOxNy film investigated by the ToF-ERDA.•Minimum surface recombination velocity of ~5 cm‐s−1 achieved from silicon surface with AlOxNy passivation films.•Hydrogen and nitrogen ions’ negative charge in the film provided chemical and field-effect passivation, respectively, on the silicon surface.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2019.01.019</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2235-7441</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2019-05, Vol.193, p.231-236
issn 0927-0248
1879-3398
language eng
recordid cdi_proquest_journals_2186793070
source Elsevier ScienceDirect Journals Complete
subjects Aluminum
Aluminum oxide
Aluminum oxynitride
Atomic layer epitaxy
Black flexible silicon
Capacitance
Charge density
Conductance
Deposition
Elastic analysis
Hydrogen
Metal oxides
Minority carriers
Nickel
Nitrogen
Organic chemistry
Passivity
Recoil
Recombination
Resistance
Silicon
Surface passivation
Thermal atomic layer deposition
Thin films
Time-of-flight elastic recoil detection analysis (ToF-ERDA)
title Thermal atomic layer deposition of AlOxNy thin films for surface passivation of nano-textured flexible silicon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A45%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20atomic%20layer%20deposition%20of%20AlOxNy%20thin%20films%20for%20surface%20passivation%20of%20nano-textured%20flexible%20silicon&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Parashar,%20Piyush%20K.&rft.date=2019-05&rft.volume=193&rft.spage=231&rft.epage=236&rft.pages=231-236&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2019.01.019&rft_dat=%3Cproquest_cross%3E2186793070%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186793070&rft_id=info:pmid/&rft_els_id=S0927024819300285&rfr_iscdi=true