Modeling the Long-Term Strength of Metals in an Unsteady Complex Stress State
The known results of tests for long-term strength in an unsteady complex stress state are simulated using the kinetic theory. Experimental data are usually described using a vector damage parameter with a piecewise-constant damage accumulation rate. The long-term strength of tubular samples is simul...
Gespeichert in:
Veröffentlicht in: | Mechanics of solids 2018-07, Vol.53 (Suppl 1), p.88-100 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100 |
---|---|
container_issue | Suppl 1 |
container_start_page | 88 |
container_title | Mechanics of solids |
container_volume | 53 |
creator | Lokoshchenko, A. M. |
description | The known results of tests for long-term strength in an unsteady complex stress state are simulated using the kinetic theory. Experimental data are usually described using a vector damage parameter with a piecewise-constant damage accumulation rate. The long-term strength of tubular samples is simulated under the simultaneous action of a constant axial stress and a shear stress once or periodically changing sign. To describe the known effect in which the time to fracture in a uniaxial plane stress state is several times smaller than the time to fracture under a uniaxial tension, a variant of Yu.N. Rabotnov’s kinetic theory with additional consideration of the anisotropy of the material is proposed. The long-term strength with an abrupt change in the stress intensity is simulated by two methods: with allowance for the damage accumulation only in the creep process and with allowance for the additional damage accumulation under instant loading. All the variants of the kinetic equations proposed lead to a good agreement between the experimental and theoretical values of the time to fracture. |
doi_str_mv | 10.3103/S0025654418030081 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2186783690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186783690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-794e7eee6bc9f95775c129abf3eb32bffa16515a5c6acf5669a31e251e47c5db3</originalsourceid><addsrcrecordid>eNp1kE9LAzEUxIMoWKsfwFvA82pessnuHqX4D1o8tD0v2fRl29ImNUnBfntTK3gQT3OY38x7DCG3wO4FMPEwZYxLJcsSaiYYq-GMDKARZVE1Qp2TwdEujv4luYpxzZhinMOATCZ-gZuV62laIh171xczDFs6TQFdn5bUWzrBpDeRrhzVjs5dTKgXBzry290GP7_JGLPohNfkwmYUb350SObPT7PRazF-f3kbPY4LI0Cl_FOJFSKqzjS2kVUlDfBGd1ZgJ3hnrQYlQWpplDZWKtVoAcglYFkZuejEkNydenfBf-wxpnbt98Hlky2HWlW1UA3LFJwoE3yMAW27C6utDocWWHtcrf2zWs7wUyZm1vUYfpv_D30Bkr5tvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186783690</pqid></control><display><type>article</type><title>Modeling the Long-Term Strength of Metals in an Unsteady Complex Stress State</title><source>SpringerLink Journals</source><creator>Lokoshchenko, A. M.</creator><creatorcontrib>Lokoshchenko, A. M.</creatorcontrib><description>The known results of tests for long-term strength in an unsteady complex stress state are simulated using the kinetic theory. Experimental data are usually described using a vector damage parameter with a piecewise-constant damage accumulation rate. The long-term strength of tubular samples is simulated under the simultaneous action of a constant axial stress and a shear stress once or periodically changing sign. To describe the known effect in which the time to fracture in a uniaxial plane stress state is several times smaller than the time to fracture under a uniaxial tension, a variant of Yu.N. Rabotnov’s kinetic theory with additional consideration of the anisotropy of the material is proposed. The long-term strength with an abrupt change in the stress intensity is simulated by two methods: with allowance for the damage accumulation only in the creep process and with allowance for the additional damage accumulation under instant loading. All the variants of the kinetic equations proposed lead to a good agreement between the experimental and theoretical values of the time to fracture.</description><identifier>ISSN: 0025-6544</identifier><identifier>EISSN: 1934-7936</identifier><identifier>DOI: 10.3103/S0025654418030081</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Anisotropy ; Axial stress ; Classical Mechanics ; Computer simulation ; Coordination compounds ; Creep (materials) ; Damage accumulation ; Kinetic equations ; Kinetic theory ; Physics ; Physics and Astronomy ; Plane stress ; Shear stress ; Strength ; Stress state</subject><ispartof>Mechanics of solids, 2018-07, Vol.53 (Suppl 1), p.88-100</ispartof><rights>Allerton Press, Inc. 2018</rights><rights>Copyright Springer Nature B.V. 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-794e7eee6bc9f95775c129abf3eb32bffa16515a5c6acf5669a31e251e47c5db3</citedby><cites>FETCH-LOGICAL-c316t-794e7eee6bc9f95775c129abf3eb32bffa16515a5c6acf5669a31e251e47c5db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0025654418030081$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0025654418030081$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lokoshchenko, A. M.</creatorcontrib><title>Modeling the Long-Term Strength of Metals in an Unsteady Complex Stress State</title><title>Mechanics of solids</title><addtitle>Mech. Solids</addtitle><description>The known results of tests for long-term strength in an unsteady complex stress state are simulated using the kinetic theory. Experimental data are usually described using a vector damage parameter with a piecewise-constant damage accumulation rate. The long-term strength of tubular samples is simulated under the simultaneous action of a constant axial stress and a shear stress once or periodically changing sign. To describe the known effect in which the time to fracture in a uniaxial plane stress state is several times smaller than the time to fracture under a uniaxial tension, a variant of Yu.N. Rabotnov’s kinetic theory with additional consideration of the anisotropy of the material is proposed. The long-term strength with an abrupt change in the stress intensity is simulated by two methods: with allowance for the damage accumulation only in the creep process and with allowance for the additional damage accumulation under instant loading. All the variants of the kinetic equations proposed lead to a good agreement between the experimental and theoretical values of the time to fracture.</description><subject>Anisotropy</subject><subject>Axial stress</subject><subject>Classical Mechanics</subject><subject>Computer simulation</subject><subject>Coordination compounds</subject><subject>Creep (materials)</subject><subject>Damage accumulation</subject><subject>Kinetic equations</subject><subject>Kinetic theory</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plane stress</subject><subject>Shear stress</subject><subject>Strength</subject><subject>Stress state</subject><issn>0025-6544</issn><issn>1934-7936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEUxIMoWKsfwFvA82pessnuHqX4D1o8tD0v2fRl29ImNUnBfntTK3gQT3OY38x7DCG3wO4FMPEwZYxLJcsSaiYYq-GMDKARZVE1Qp2TwdEujv4luYpxzZhinMOATCZ-gZuV62laIh171xczDFs6TQFdn5bUWzrBpDeRrhzVjs5dTKgXBzry290GP7_JGLPohNfkwmYUb350SObPT7PRazF-f3kbPY4LI0Cl_FOJFSKqzjS2kVUlDfBGd1ZgJ3hnrQYlQWpplDZWKtVoAcglYFkZuejEkNydenfBf-wxpnbt98Hlky2HWlW1UA3LFJwoE3yMAW27C6utDocWWHtcrf2zWs7wUyZm1vUYfpv_D30Bkr5tvA</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Lokoshchenko, A. M.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180701</creationdate><title>Modeling the Long-Term Strength of Metals in an Unsteady Complex Stress State</title><author>Lokoshchenko, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-794e7eee6bc9f95775c129abf3eb32bffa16515a5c6acf5669a31e251e47c5db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anisotropy</topic><topic>Axial stress</topic><topic>Classical Mechanics</topic><topic>Computer simulation</topic><topic>Coordination compounds</topic><topic>Creep (materials)</topic><topic>Damage accumulation</topic><topic>Kinetic equations</topic><topic>Kinetic theory</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plane stress</topic><topic>Shear stress</topic><topic>Strength</topic><topic>Stress state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lokoshchenko, A. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Mechanics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lokoshchenko, A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the Long-Term Strength of Metals in an Unsteady Complex Stress State</atitle><jtitle>Mechanics of solids</jtitle><stitle>Mech. Solids</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>53</volume><issue>Suppl 1</issue><spage>88</spage><epage>100</epage><pages>88-100</pages><issn>0025-6544</issn><eissn>1934-7936</eissn><abstract>The known results of tests for long-term strength in an unsteady complex stress state are simulated using the kinetic theory. Experimental data are usually described using a vector damage parameter with a piecewise-constant damage accumulation rate. The long-term strength of tubular samples is simulated under the simultaneous action of a constant axial stress and a shear stress once or periodically changing sign. To describe the known effect in which the time to fracture in a uniaxial plane stress state is several times smaller than the time to fracture under a uniaxial tension, a variant of Yu.N. Rabotnov’s kinetic theory with additional consideration of the anisotropy of the material is proposed. The long-term strength with an abrupt change in the stress intensity is simulated by two methods: with allowance for the damage accumulation only in the creep process and with allowance for the additional damage accumulation under instant loading. All the variants of the kinetic equations proposed lead to a good agreement between the experimental and theoretical values of the time to fracture.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0025654418030081</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-6544 |
ispartof | Mechanics of solids, 2018-07, Vol.53 (Suppl 1), p.88-100 |
issn | 0025-6544 1934-7936 |
language | eng |
recordid | cdi_proquest_journals_2186783690 |
source | SpringerLink Journals |
subjects | Anisotropy Axial stress Classical Mechanics Computer simulation Coordination compounds Creep (materials) Damage accumulation Kinetic equations Kinetic theory Physics Physics and Astronomy Plane stress Shear stress Strength Stress state |
title | Modeling the Long-Term Strength of Metals in an Unsteady Complex Stress State |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A46%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20Long-Term%20Strength%20of%20Metals%20in%20an%20Unsteady%20Complex%20Stress%20State&rft.jtitle=Mechanics%20of%20solids&rft.au=Lokoshchenko,%20A.%20M.&rft.date=2018-07-01&rft.volume=53&rft.issue=Suppl%201&rft.spage=88&rft.epage=100&rft.pages=88-100&rft.issn=0025-6544&rft.eissn=1934-7936&rft_id=info:doi/10.3103/S0025654418030081&rft_dat=%3Cproquest_cross%3E2186783690%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186783690&rft_id=info:pmid/&rfr_iscdi=true |