Molecular dynamics simulation of dislocation evolution and surface mechanical properties on polycrystalline copper
During the nanofabrication process of polycrystalline materials, the interactions of dislocations in material determine the evolution of subsurface defects. In this paper, the molecular dynamics simulation models of nanocutting polycrystalline copper, which is used to study the relationship between...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2019-03, Vol.125 (3), p.1-13, Article 214 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | Applied physics. A, Materials science & processing |
container_volume | 125 |
creator | Liu, Haitao Hao, Mengjiao Tao, Mingfang Sun, Yazhou Xie, Wenkun |
description | During the nanofabrication process of polycrystalline materials, the interactions of dislocations in material determine the evolution of subsurface defects. In this paper, the molecular dynamics simulation models of nanocutting polycrystalline copper, which is used to study the relationship between the crystal structure and the cutting force during the cutting process, were established, and the transformation process between grain boundaries and dislocations was studied to get the effects of grain boundary on dislocation slip and stress conduction. The results show that there are obvious rules between cutting force and cutting process and grain boundaries can prevent dislocation slip and shielding stress conduction. The influence of different cutting parameters on the evolution of subsurface defects of workpiece was further analyzed. Finally, the nanoindentation simulations and experiments were carried out to study the influence of cutting parameters on surface mechanical properties of workpiece. It is found that to some extent, the surface hardening effect of the workpiece is remarkable with the cutting depth increase. |
doi_str_mv | 10.1007/s00339-019-2508-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2186774770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186774770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1704afe57bc609dac32397a7cb4466ea011f065f283e5bc64a47b6b3dbf361cc3</originalsourceid><addsrcrecordid>eNp1kE1PxCAQhonRxHX1B3gj8YwOhUJ7NBu_kjVe9EwopdoNLRVas_33stbEk1yGmXnemcmL0CWFawogbyIAYyUBWpIsh4Lsj9CKcpYREAyO0QpKLknBSnGKzmLcQXo8y1YoPHtnzeR0wPXc6641Ece2S4Wx9T32Da7b6LxZUvvl3fTz032N4xQabSzurPnQfWu0w0Pwgw1jayNO0ODdbMIcR-1c21ts_JC65-ik0S7ai9-4Rm_3d6-bR7J9eXja3G6JYVSMhErgurG5rIyAstaGZayUWpqKcyGsBkobEHmTFczmieGay0pUrK4aJqgxbI2ulrnpqM_JxlHt_BT6tFJltBBScikhUXShTPAxBtuoIbSdDrOioA7WqsValaxVB2vVPmmyRRMT27_b8Df5f9E3TTJ_5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186774770</pqid></control><display><type>article</type><title>Molecular dynamics simulation of dislocation evolution and surface mechanical properties on polycrystalline copper</title><source>Springer Nature - Complete Springer Journals</source><creator>Liu, Haitao ; Hao, Mengjiao ; Tao, Mingfang ; Sun, Yazhou ; Xie, Wenkun</creator><creatorcontrib>Liu, Haitao ; Hao, Mengjiao ; Tao, Mingfang ; Sun, Yazhou ; Xie, Wenkun</creatorcontrib><description>During the nanofabrication process of polycrystalline materials, the interactions of dislocations in material determine the evolution of subsurface defects. In this paper, the molecular dynamics simulation models of nanocutting polycrystalline copper, which is used to study the relationship between the crystal structure and the cutting force during the cutting process, were established, and the transformation process between grain boundaries and dislocations was studied to get the effects of grain boundary on dislocation slip and stress conduction. The results show that there are obvious rules between cutting force and cutting process and grain boundaries can prevent dislocation slip and shielding stress conduction. The influence of different cutting parameters on the evolution of subsurface defects of workpiece was further analyzed. Finally, the nanoindentation simulations and experiments were carried out to study the influence of cutting parameters on surface mechanical properties of workpiece. It is found that to some extent, the surface hardening effect of the workpiece is remarkable with the cutting depth increase.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-019-2508-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied physics ; Characterization and Evaluation of Materials ; Computer simulation ; Condensed Matter Physics ; Copper ; Crystal defects ; Crystal structure ; Cutting force ; Cutting parameters ; Dislocations ; Evolution ; Grain boundaries ; Machines ; Manufacturing ; Materials science ; Mechanical properties ; Molecular dynamics ; Nanofabrication ; Nanoindentation ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Polycrystals ; Processes ; Simulation ; Slip ; Surface hardening ; Surfaces and Interfaces ; Thin Films ; Workpieces</subject><ispartof>Applied physics. A, Materials science & processing, 2019-03, Vol.125 (3), p.1-13, Article 214</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1704afe57bc609dac32397a7cb4466ea011f065f283e5bc64a47b6b3dbf361cc3</citedby><cites>FETCH-LOGICAL-c316t-1704afe57bc609dac32397a7cb4466ea011f065f283e5bc64a47b6b3dbf361cc3</cites><orcidid>0000-0002-6659-3473</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-019-2508-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-019-2508-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Liu, Haitao</creatorcontrib><creatorcontrib>Hao, Mengjiao</creatorcontrib><creatorcontrib>Tao, Mingfang</creatorcontrib><creatorcontrib>Sun, Yazhou</creatorcontrib><creatorcontrib>Xie, Wenkun</creatorcontrib><title>Molecular dynamics simulation of dislocation evolution and surface mechanical properties on polycrystalline copper</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>During the nanofabrication process of polycrystalline materials, the interactions of dislocations in material determine the evolution of subsurface defects. In this paper, the molecular dynamics simulation models of nanocutting polycrystalline copper, which is used to study the relationship between the crystal structure and the cutting force during the cutting process, were established, and the transformation process between grain boundaries and dislocations was studied to get the effects of grain boundary on dislocation slip and stress conduction. The results show that there are obvious rules between cutting force and cutting process and grain boundaries can prevent dislocation slip and shielding stress conduction. The influence of different cutting parameters on the evolution of subsurface defects of workpiece was further analyzed. Finally, the nanoindentation simulations and experiments were carried out to study the influence of cutting parameters on surface mechanical properties of workpiece. It is found that to some extent, the surface hardening effect of the workpiece is remarkable with the cutting depth increase.</description><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Computer simulation</subject><subject>Condensed Matter Physics</subject><subject>Copper</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Cutting force</subject><subject>Cutting parameters</subject><subject>Dislocations</subject><subject>Evolution</subject><subject>Grain boundaries</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Molecular dynamics</subject><subject>Nanofabrication</subject><subject>Nanoindentation</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polycrystals</subject><subject>Processes</subject><subject>Simulation</subject><subject>Slip</subject><subject>Surface hardening</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Workpieces</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PxCAQhonRxHX1B3gj8YwOhUJ7NBu_kjVe9EwopdoNLRVas_33stbEk1yGmXnemcmL0CWFawogbyIAYyUBWpIsh4Lsj9CKcpYREAyO0QpKLknBSnGKzmLcQXo8y1YoPHtnzeR0wPXc6641Ece2S4Wx9T32Da7b6LxZUvvl3fTz032N4xQabSzurPnQfWu0w0Pwgw1jayNO0ODdbMIcR-1c21ts_JC65-ik0S7ai9-4Rm_3d6-bR7J9eXja3G6JYVSMhErgurG5rIyAstaGZayUWpqKcyGsBkobEHmTFczmieGay0pUrK4aJqgxbI2ulrnpqM_JxlHt_BT6tFJltBBScikhUXShTPAxBtuoIbSdDrOioA7WqsValaxVB2vVPmmyRRMT27_b8Df5f9E3TTJ_5g</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Liu, Haitao</creator><creator>Hao, Mengjiao</creator><creator>Tao, Mingfang</creator><creator>Sun, Yazhou</creator><creator>Xie, Wenkun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6659-3473</orcidid></search><sort><creationdate>20190301</creationdate><title>Molecular dynamics simulation of dislocation evolution and surface mechanical properties on polycrystalline copper</title><author>Liu, Haitao ; Hao, Mengjiao ; Tao, Mingfang ; Sun, Yazhou ; Xie, Wenkun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1704afe57bc609dac32397a7cb4466ea011f065f283e5bc64a47b6b3dbf361cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Computer simulation</topic><topic>Condensed Matter Physics</topic><topic>Copper</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Cutting force</topic><topic>Cutting parameters</topic><topic>Dislocations</topic><topic>Evolution</topic><topic>Grain boundaries</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Molecular dynamics</topic><topic>Nanofabrication</topic><topic>Nanoindentation</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polycrystals</topic><topic>Processes</topic><topic>Simulation</topic><topic>Slip</topic><topic>Surface hardening</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Haitao</creatorcontrib><creatorcontrib>Hao, Mengjiao</creatorcontrib><creatorcontrib>Tao, Mingfang</creatorcontrib><creatorcontrib>Sun, Yazhou</creatorcontrib><creatorcontrib>Xie, Wenkun</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Haitao</au><au>Hao, Mengjiao</au><au>Tao, Mingfang</au><au>Sun, Yazhou</au><au>Xie, Wenkun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular dynamics simulation of dislocation evolution and surface mechanical properties on polycrystalline copper</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>125</volume><issue>3</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><artnum>214</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>During the nanofabrication process of polycrystalline materials, the interactions of dislocations in material determine the evolution of subsurface defects. In this paper, the molecular dynamics simulation models of nanocutting polycrystalline copper, which is used to study the relationship between the crystal structure and the cutting force during the cutting process, were established, and the transformation process between grain boundaries and dislocations was studied to get the effects of grain boundary on dislocation slip and stress conduction. The results show that there are obvious rules between cutting force and cutting process and grain boundaries can prevent dislocation slip and shielding stress conduction. The influence of different cutting parameters on the evolution of subsurface defects of workpiece was further analyzed. Finally, the nanoindentation simulations and experiments were carried out to study the influence of cutting parameters on surface mechanical properties of workpiece. It is found that to some extent, the surface hardening effect of the workpiece is remarkable with the cutting depth increase.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-019-2508-x</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6659-3473</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2019-03, Vol.125 (3), p.1-13, Article 214 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_journals_2186774770 |
source | Springer Nature - Complete Springer Journals |
subjects | Applied physics Characterization and Evaluation of Materials Computer simulation Condensed Matter Physics Copper Crystal defects Crystal structure Cutting force Cutting parameters Dislocations Evolution Grain boundaries Machines Manufacturing Materials science Mechanical properties Molecular dynamics Nanofabrication Nanoindentation Nanotechnology Optical and Electronic Materials Physics Physics and Astronomy Polycrystals Processes Simulation Slip Surface hardening Surfaces and Interfaces Thin Films Workpieces |
title | Molecular dynamics simulation of dislocation evolution and surface mechanical properties on polycrystalline copper |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A30%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20dynamics%20simulation%20of%20dislocation%20evolution%20and%20surface%20mechanical%20properties%20on%20polycrystalline%20copper&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Liu,%20Haitao&rft.date=2019-03-01&rft.volume=125&rft.issue=3&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.artnum=214&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-019-2508-x&rft_dat=%3Cproquest_cross%3E2186774770%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186774770&rft_id=info:pmid/&rfr_iscdi=true |