Molecular dynamics simulation of dislocation evolution and surface mechanical properties on polycrystalline copper

During the nanofabrication process of polycrystalline materials, the interactions of dislocations in material determine the evolution of subsurface defects. In this paper, the molecular dynamics simulation models of nanocutting polycrystalline copper, which is used to study the relationship between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2019-03, Vol.125 (3), p.1-13, Article 214
Hauptverfasser: Liu, Haitao, Hao, Mengjiao, Tao, Mingfang, Sun, Yazhou, Xie, Wenkun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 3
container_start_page 1
container_title Applied physics. A, Materials science & processing
container_volume 125
creator Liu, Haitao
Hao, Mengjiao
Tao, Mingfang
Sun, Yazhou
Xie, Wenkun
description During the nanofabrication process of polycrystalline materials, the interactions of dislocations in material determine the evolution of subsurface defects. In this paper, the molecular dynamics simulation models of nanocutting polycrystalline copper, which is used to study the relationship between the crystal structure and the cutting force during the cutting process, were established, and the transformation process between grain boundaries and dislocations was studied to get the effects of grain boundary on dislocation slip and stress conduction. The results show that there are obvious rules between cutting force and cutting process and grain boundaries can prevent dislocation slip and shielding stress conduction. The influence of different cutting parameters on the evolution of subsurface defects of workpiece was further analyzed. Finally, the nanoindentation simulations and experiments were carried out to study the influence of cutting parameters on surface mechanical properties of workpiece. It is found that to some extent, the surface hardening effect of the workpiece is remarkable with the cutting depth increase.
doi_str_mv 10.1007/s00339-019-2508-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2186774770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186774770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1704afe57bc609dac32397a7cb4466ea011f065f283e5bc64a47b6b3dbf361cc3</originalsourceid><addsrcrecordid>eNp1kE1PxCAQhonRxHX1B3gj8YwOhUJ7NBu_kjVe9EwopdoNLRVas_33stbEk1yGmXnemcmL0CWFawogbyIAYyUBWpIsh4Lsj9CKcpYREAyO0QpKLknBSnGKzmLcQXo8y1YoPHtnzeR0wPXc6641Ece2S4Wx9T32Da7b6LxZUvvl3fTz032N4xQabSzurPnQfWu0w0Pwgw1jayNO0ODdbMIcR-1c21ts_JC65-ik0S7ai9-4Rm_3d6-bR7J9eXja3G6JYVSMhErgurG5rIyAstaGZayUWpqKcyGsBkobEHmTFczmieGay0pUrK4aJqgxbI2ulrnpqM_JxlHt_BT6tFJltBBScikhUXShTPAxBtuoIbSdDrOioA7WqsValaxVB2vVPmmyRRMT27_b8Df5f9E3TTJ_5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186774770</pqid></control><display><type>article</type><title>Molecular dynamics simulation of dislocation evolution and surface mechanical properties on polycrystalline copper</title><source>Springer Nature - Complete Springer Journals</source><creator>Liu, Haitao ; Hao, Mengjiao ; Tao, Mingfang ; Sun, Yazhou ; Xie, Wenkun</creator><creatorcontrib>Liu, Haitao ; Hao, Mengjiao ; Tao, Mingfang ; Sun, Yazhou ; Xie, Wenkun</creatorcontrib><description>During the nanofabrication process of polycrystalline materials, the interactions of dislocations in material determine the evolution of subsurface defects. In this paper, the molecular dynamics simulation models of nanocutting polycrystalline copper, which is used to study the relationship between the crystal structure and the cutting force during the cutting process, were established, and the transformation process between grain boundaries and dislocations was studied to get the effects of grain boundary on dislocation slip and stress conduction. The results show that there are obvious rules between cutting force and cutting process and grain boundaries can prevent dislocation slip and shielding stress conduction. The influence of different cutting parameters on the evolution of subsurface defects of workpiece was further analyzed. Finally, the nanoindentation simulations and experiments were carried out to study the influence of cutting parameters on surface mechanical properties of workpiece. It is found that to some extent, the surface hardening effect of the workpiece is remarkable with the cutting depth increase.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-019-2508-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied physics ; Characterization and Evaluation of Materials ; Computer simulation ; Condensed Matter Physics ; Copper ; Crystal defects ; Crystal structure ; Cutting force ; Cutting parameters ; Dislocations ; Evolution ; Grain boundaries ; Machines ; Manufacturing ; Materials science ; Mechanical properties ; Molecular dynamics ; Nanofabrication ; Nanoindentation ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Polycrystals ; Processes ; Simulation ; Slip ; Surface hardening ; Surfaces and Interfaces ; Thin Films ; Workpieces</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2019-03, Vol.125 (3), p.1-13, Article 214</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1704afe57bc609dac32397a7cb4466ea011f065f283e5bc64a47b6b3dbf361cc3</citedby><cites>FETCH-LOGICAL-c316t-1704afe57bc609dac32397a7cb4466ea011f065f283e5bc64a47b6b3dbf361cc3</cites><orcidid>0000-0002-6659-3473</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-019-2508-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-019-2508-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Liu, Haitao</creatorcontrib><creatorcontrib>Hao, Mengjiao</creatorcontrib><creatorcontrib>Tao, Mingfang</creatorcontrib><creatorcontrib>Sun, Yazhou</creatorcontrib><creatorcontrib>Xie, Wenkun</creatorcontrib><title>Molecular dynamics simulation of dislocation evolution and surface mechanical properties on polycrystalline copper</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>During the nanofabrication process of polycrystalline materials, the interactions of dislocations in material determine the evolution of subsurface defects. In this paper, the molecular dynamics simulation models of nanocutting polycrystalline copper, which is used to study the relationship between the crystal structure and the cutting force during the cutting process, were established, and the transformation process between grain boundaries and dislocations was studied to get the effects of grain boundary on dislocation slip and stress conduction. The results show that there are obvious rules between cutting force and cutting process and grain boundaries can prevent dislocation slip and shielding stress conduction. The influence of different cutting parameters on the evolution of subsurface defects of workpiece was further analyzed. Finally, the nanoindentation simulations and experiments were carried out to study the influence of cutting parameters on surface mechanical properties of workpiece. It is found that to some extent, the surface hardening effect of the workpiece is remarkable with the cutting depth increase.</description><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Computer simulation</subject><subject>Condensed Matter Physics</subject><subject>Copper</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Cutting force</subject><subject>Cutting parameters</subject><subject>Dislocations</subject><subject>Evolution</subject><subject>Grain boundaries</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Molecular dynamics</subject><subject>Nanofabrication</subject><subject>Nanoindentation</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polycrystals</subject><subject>Processes</subject><subject>Simulation</subject><subject>Slip</subject><subject>Surface hardening</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Workpieces</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PxCAQhonRxHX1B3gj8YwOhUJ7NBu_kjVe9EwopdoNLRVas_33stbEk1yGmXnemcmL0CWFawogbyIAYyUBWpIsh4Lsj9CKcpYREAyO0QpKLknBSnGKzmLcQXo8y1YoPHtnzeR0wPXc6641Ece2S4Wx9T32Da7b6LxZUvvl3fTz032N4xQabSzurPnQfWu0w0Pwgw1jayNO0ODdbMIcR-1c21ts_JC65-ik0S7ai9-4Rm_3d6-bR7J9eXja3G6JYVSMhErgurG5rIyAstaGZayUWpqKcyGsBkobEHmTFczmieGay0pUrK4aJqgxbI2ulrnpqM_JxlHt_BT6tFJltBBScikhUXShTPAxBtuoIbSdDrOioA7WqsValaxVB2vVPmmyRRMT27_b8Df5f9E3TTJ_5g</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Liu, Haitao</creator><creator>Hao, Mengjiao</creator><creator>Tao, Mingfang</creator><creator>Sun, Yazhou</creator><creator>Xie, Wenkun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6659-3473</orcidid></search><sort><creationdate>20190301</creationdate><title>Molecular dynamics simulation of dislocation evolution and surface mechanical properties on polycrystalline copper</title><author>Liu, Haitao ; Hao, Mengjiao ; Tao, Mingfang ; Sun, Yazhou ; Xie, Wenkun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1704afe57bc609dac32397a7cb4466ea011f065f283e5bc64a47b6b3dbf361cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Computer simulation</topic><topic>Condensed Matter Physics</topic><topic>Copper</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Cutting force</topic><topic>Cutting parameters</topic><topic>Dislocations</topic><topic>Evolution</topic><topic>Grain boundaries</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Molecular dynamics</topic><topic>Nanofabrication</topic><topic>Nanoindentation</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polycrystals</topic><topic>Processes</topic><topic>Simulation</topic><topic>Slip</topic><topic>Surface hardening</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Haitao</creatorcontrib><creatorcontrib>Hao, Mengjiao</creatorcontrib><creatorcontrib>Tao, Mingfang</creatorcontrib><creatorcontrib>Sun, Yazhou</creatorcontrib><creatorcontrib>Xie, Wenkun</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Haitao</au><au>Hao, Mengjiao</au><au>Tao, Mingfang</au><au>Sun, Yazhou</au><au>Xie, Wenkun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular dynamics simulation of dislocation evolution and surface mechanical properties on polycrystalline copper</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>125</volume><issue>3</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><artnum>214</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>During the nanofabrication process of polycrystalline materials, the interactions of dislocations in material determine the evolution of subsurface defects. In this paper, the molecular dynamics simulation models of nanocutting polycrystalline copper, which is used to study the relationship between the crystal structure and the cutting force during the cutting process, were established, and the transformation process between grain boundaries and dislocations was studied to get the effects of grain boundary on dislocation slip and stress conduction. The results show that there are obvious rules between cutting force and cutting process and grain boundaries can prevent dislocation slip and shielding stress conduction. The influence of different cutting parameters on the evolution of subsurface defects of workpiece was further analyzed. Finally, the nanoindentation simulations and experiments were carried out to study the influence of cutting parameters on surface mechanical properties of workpiece. It is found that to some extent, the surface hardening effect of the workpiece is remarkable with the cutting depth increase.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-019-2508-x</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6659-3473</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2019-03, Vol.125 (3), p.1-13, Article 214
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_2186774770
source Springer Nature - Complete Springer Journals
subjects Applied physics
Characterization and Evaluation of Materials
Computer simulation
Condensed Matter Physics
Copper
Crystal defects
Crystal structure
Cutting force
Cutting parameters
Dislocations
Evolution
Grain boundaries
Machines
Manufacturing
Materials science
Mechanical properties
Molecular dynamics
Nanofabrication
Nanoindentation
Nanotechnology
Optical and Electronic Materials
Physics
Physics and Astronomy
Polycrystals
Processes
Simulation
Slip
Surface hardening
Surfaces and Interfaces
Thin Films
Workpieces
title Molecular dynamics simulation of dislocation evolution and surface mechanical properties on polycrystalline copper
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A30%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20dynamics%20simulation%20of%20dislocation%20evolution%20and%20surface%20mechanical%20properties%20on%20polycrystalline%20copper&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Liu,%20Haitao&rft.date=2019-03-01&rft.volume=125&rft.issue=3&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.artnum=214&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-019-2508-x&rft_dat=%3Cproquest_cross%3E2186774770%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186774770&rft_id=info:pmid/&rfr_iscdi=true