A robust cellular manufacturing system design for dynamic part population using a genetic algorithm

As changing conditions prevail in the manufacturing environment, the design of cellular manufacturing systems, which involves the formation of part families and machine cells, is difficult. This is due to the fact that the machines need to be relocated as per the requirements if adaptive designs are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of production research 2008-09, Vol.46 (18), p.5191-5210
Hauptverfasser: Pillai, V. Madhusudanan, Subbarao, Kankata
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5210
container_issue 18
container_start_page 5191
container_title International journal of production research
container_volume 46
creator Pillai, V. Madhusudanan
Subbarao, Kankata
description As changing conditions prevail in the manufacturing environment, the design of cellular manufacturing systems, which involves the formation of part families and machine cells, is difficult. This is due to the fact that the machines need to be relocated as per the requirements if adaptive designs are used. This paper presents a new approach (robust design) for forming part families and machine cells, which can handle all the changes in demands and product mixes without any relocations. This method suggests fixed machine cells for the dynamic nature of the production environment by considering a multi-period forecast of product mix and demand. A genetic algorithm based solution procedure is adopted to solve the problem. The results thus obtained were compared with the adaptive design proposed by Wicks and Reasor ( 1999 ). It is found that the robust design performs better than the adaptive design for the problems attempted.
doi_str_mv 10.1080/00207540701332658
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_218676255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34482563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-c2509dc6f3aff9801980e8956ce5cb09e53c3cafe0c98441da3986e3868206ed3</originalsourceid><addsrcrecordid>eNqFkMFqHSEUhqW00Ns0D5CdBNrdJMdxdBzoJoS0CQS6aaE7OXH0xjCjU3Vo7tvXy027aAgVxMX5vsPvT8gJgzMGCs4BWuhFBz0wzlsp1CuyYVzKRij14zXZ7OdNBfhb8i7nB6hHqG5DzAVN8W7NhRo7TeuEic4YVoemrMmHLc27XOxMR5v9NlAXEx13AWdv6IKp0CUuVSo-BrrmPY90a4MtdY7TNiZf7uf35I3DKdvjp_eIfP989e3yurn9-uXm8uK2MQKgNKYVMIxGOo7ODQpYvVYNQhorzB0MVnDDDToLZlBdx0bkg5KWK6lakHbkR-TjYe-S4s_V5qJnn_ffwmDjmjXvOtUKySt4-g_4ENcUajbdMiV72QpRIXaATIo5J-v0kvyMaacZ6H3n-lnn1fnwtBizwcklDMbnv2KNCX0n-8r1B86H2uiMv2KaRl1wN8X0R3q2XZfHUs1P_zX5ywF_AyyMpv0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218676255</pqid></control><display><type>article</type><title>A robust cellular manufacturing system design for dynamic part population using a genetic algorithm</title><source>Taylor &amp; Francis:Master (3349 titles)</source><source>Business Source Complete</source><creator>Pillai, V. Madhusudanan ; Subbarao, Kankata</creator><creatorcontrib>Pillai, V. Madhusudanan ; Subbarao, Kankata</creatorcontrib><description>As changing conditions prevail in the manufacturing environment, the design of cellular manufacturing systems, which involves the formation of part families and machine cells, is difficult. This is due to the fact that the machines need to be relocated as per the requirements if adaptive designs are used. This paper presents a new approach (robust design) for forming part families and machine cells, which can handle all the changes in demands and product mixes without any relocations. This method suggests fixed machine cells for the dynamic nature of the production environment by considering a multi-period forecast of product mix and demand. A genetic algorithm based solution procedure is adopted to solve the problem. The results thus obtained were compared with the adaptive design proposed by Wicks and Reasor ( 1999 ). It is found that the robust design performs better than the adaptive design for the problems attempted.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207540701332658</identifier><identifier>CODEN: IJPRB8</identifier><language>eng</language><publisher>London: Taylor &amp; Francis Group</publisher><subject>Adaptive design ; Applied sciences ; Cellular manufacturing ; Comparative analysis ; Design ; Exact sciences and technology ; Genetic algorithm ; Genetic algorithms ; Inventory control, production control. Distribution ; Manufacturing cells ; Operational research and scientific management ; Operational research. Management science ; Problem solving ; Robust design ; Studies</subject><ispartof>International journal of production research, 2008-09, Vol.46 (18), p.5191-5210</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2008</rights><rights>2008 INIST-CNRS</rights><rights>Copyright Taylor &amp; Francis Group Sep 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-c2509dc6f3aff9801980e8956ce5cb09e53c3cafe0c98441da3986e3868206ed3</citedby><cites>FETCH-LOGICAL-c500t-c2509dc6f3aff9801980e8956ce5cb09e53c3cafe0c98441da3986e3868206ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207540701332658$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207540701332658$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20607467$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pillai, V. Madhusudanan</creatorcontrib><creatorcontrib>Subbarao, Kankata</creatorcontrib><title>A robust cellular manufacturing system design for dynamic part population using a genetic algorithm</title><title>International journal of production research</title><description>As changing conditions prevail in the manufacturing environment, the design of cellular manufacturing systems, which involves the formation of part families and machine cells, is difficult. This is due to the fact that the machines need to be relocated as per the requirements if adaptive designs are used. This paper presents a new approach (robust design) for forming part families and machine cells, which can handle all the changes in demands and product mixes without any relocations. This method suggests fixed machine cells for the dynamic nature of the production environment by considering a multi-period forecast of product mix and demand. A genetic algorithm based solution procedure is adopted to solve the problem. The results thus obtained were compared with the adaptive design proposed by Wicks and Reasor ( 1999 ). It is found that the robust design performs better than the adaptive design for the problems attempted.</description><subject>Adaptive design</subject><subject>Applied sciences</subject><subject>Cellular manufacturing</subject><subject>Comparative analysis</subject><subject>Design</subject><subject>Exact sciences and technology</subject><subject>Genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Inventory control, production control. Distribution</subject><subject>Manufacturing cells</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Problem solving</subject><subject>Robust design</subject><subject>Studies</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkMFqHSEUhqW00Ns0D5CdBNrdJMdxdBzoJoS0CQS6aaE7OXH0xjCjU3Vo7tvXy027aAgVxMX5vsPvT8gJgzMGCs4BWuhFBz0wzlsp1CuyYVzKRij14zXZ7OdNBfhb8i7nB6hHqG5DzAVN8W7NhRo7TeuEic4YVoemrMmHLc27XOxMR5v9NlAXEx13AWdv6IKp0CUuVSo-BrrmPY90a4MtdY7TNiZf7uf35I3DKdvjp_eIfP989e3yurn9-uXm8uK2MQKgNKYVMIxGOo7ODQpYvVYNQhorzB0MVnDDDToLZlBdx0bkg5KWK6lakHbkR-TjYe-S4s_V5qJnn_ffwmDjmjXvOtUKySt4-g_4ENcUajbdMiV72QpRIXaATIo5J-v0kvyMaacZ6H3n-lnn1fnwtBizwcklDMbnv2KNCX0n-8r1B86H2uiMv2KaRl1wN8X0R3q2XZfHUs1P_zX5ywF_AyyMpv0</recordid><startdate>20080915</startdate><enddate>20080915</enddate><creator>Pillai, V. Madhusudanan</creator><creator>Subbarao, Kankata</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis LLC</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080915</creationdate><title>A robust cellular manufacturing system design for dynamic part population using a genetic algorithm</title><author>Pillai, V. Madhusudanan ; Subbarao, Kankata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-c2509dc6f3aff9801980e8956ce5cb09e53c3cafe0c98441da3986e3868206ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adaptive design</topic><topic>Applied sciences</topic><topic>Cellular manufacturing</topic><topic>Comparative analysis</topic><topic>Design</topic><topic>Exact sciences and technology</topic><topic>Genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Inventory control, production control. Distribution</topic><topic>Manufacturing cells</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Problem solving</topic><topic>Robust design</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pillai, V. Madhusudanan</creatorcontrib><creatorcontrib>Subbarao, Kankata</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pillai, V. Madhusudanan</au><au>Subbarao, Kankata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A robust cellular manufacturing system design for dynamic part population using a genetic algorithm</atitle><jtitle>International journal of production research</jtitle><date>2008-09-15</date><risdate>2008</risdate><volume>46</volume><issue>18</issue><spage>5191</spage><epage>5210</epage><pages>5191-5210</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><coden>IJPRB8</coden><abstract>As changing conditions prevail in the manufacturing environment, the design of cellular manufacturing systems, which involves the formation of part families and machine cells, is difficult. This is due to the fact that the machines need to be relocated as per the requirements if adaptive designs are used. This paper presents a new approach (robust design) for forming part families and machine cells, which can handle all the changes in demands and product mixes without any relocations. This method suggests fixed machine cells for the dynamic nature of the production environment by considering a multi-period forecast of product mix and demand. A genetic algorithm based solution procedure is adopted to solve the problem. The results thus obtained were compared with the adaptive design proposed by Wicks and Reasor ( 1999 ). It is found that the robust design performs better than the adaptive design for the problems attempted.</abstract><cop>London</cop><cop>Washington, DC</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00207540701332658</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7543
ispartof International journal of production research, 2008-09, Vol.46 (18), p.5191-5210
issn 0020-7543
1366-588X
language eng
recordid cdi_proquest_journals_218676255
source Taylor & Francis:Master (3349 titles); Business Source Complete
subjects Adaptive design
Applied sciences
Cellular manufacturing
Comparative analysis
Design
Exact sciences and technology
Genetic algorithm
Genetic algorithms
Inventory control, production control. Distribution
Manufacturing cells
Operational research and scientific management
Operational research. Management science
Problem solving
Robust design
Studies
title A robust cellular manufacturing system design for dynamic part population using a genetic algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A10%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20robust%20cellular%20manufacturing%20system%20design%20for%20dynamic%20part%20population%20using%20a%20genetic%20algorithm&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Pillai,%20V.%20Madhusudanan&rft.date=2008-09-15&rft.volume=46&rft.issue=18&rft.spage=5191&rft.epage=5210&rft.pages=5191-5210&rft.issn=0020-7543&rft.eissn=1366-588X&rft.coden=IJPRB8&rft_id=info:doi/10.1080/00207540701332658&rft_dat=%3Cproquest_pasca%3E34482563%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218676255&rft_id=info:pmid/&rfr_iscdi=true