Characterization and Photoluminescent, Photocatalytic and Antimicrobial Properties of Boron-Doped TiO2 Nanoparticles Obtained by Microwave-Assisted Solvothermic Method
Boron doped TiO 2 : x B ( x = 0 mol.%, 1 mol.%, 2 mol.%, 4 mol.% and 8 mol.%) was quickly synthesized by a microwave-assisted solvothermic method at 140°C for 10 min. The nanoparticles obtained were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscop...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2019-05, Vol.48 (5), p.3145-3156 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3156 |
---|---|
container_issue | 5 |
container_start_page | 3145 |
container_title | Journal of electronic materials |
container_volume | 48 |
creator | Andrade Neto, N. F. Zanatta, P. Nascimento, L. E. Nascimento, R. M. Bomio, M. R. D. Motta, F. V. |
description | Boron doped TiO
2
:
x
B (
x
= 0 mol.%, 1 mol.%, 2 mol.%, 4 mol.% and 8 mol.%) was quickly synthesized by a microwave-assisted solvothermic method at 140°C for 10 min. The nanoparticles obtained were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscopy, photoluminescence, field emission scanning electron microscopy, electron microscopy and diffuse optical reflectance. The photocatalytic properties were estimated against methylene blue dye. The antimicrobial activity was measured by the disc diffusion technique against
S. aureus
and
E. coli
bacteria. The XRD patterns show that there was no formation of secondary phases and that all the peaks correspond to the anatase phase of TiO
2
. Rietveld’s refinement showed that the addition of B
3+
in the TiO
2
lattice promotes a reduction in the size of the crystallites and this reduction it effectively increases the degradation capacity of the methylene blue dye, which after 50 min the 8%B sample degraded completely, while the pure TiO
2
sample reduced its concentration by 95%. Boron-doped TiO
2
was effective when reused and after the third cycle the photocatalytic activity of the powders was maintained. In addition, the incorporation of 8%B in the TiO
2
lattice resulted in an increase from 8.66 mm to 15.61 mm and 9.04 mm to 13.65 mm in the inhibition halos of the
S. aureus
and
E. coli
bacteria, respectively. |
doi_str_mv | 10.1007/s11664-019-07076-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2186634559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186634559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-960c6557859eb030b2fef618f4dfd5fd60f8986ad6069df7f0998b12653ef2393</originalsourceid><addsrcrecordid>eNp9kctOAyEYhYnRxHp5AVckbkVhKMzMstZr0loTNXFHmBmwNFOoQGvGF_I1pY6JO1eQ83_nQP4DwAnB5wTj_CIQwvkQYVIinOOco24HDAgbUkQK_roLBphyglhG2T44CGGBMWGkIAPwNZ5LL-uovPmU0TgLpW3g49xF166XxqpQKxvPeqWWUbZdNPUPNLLRLE3tXWVkCx-9WykfjQrQaXjpvLPoKkkNfDazDD5I61Yyzes2EbMqypTdwKqD023Eh9woNArBhJjUJ9duXJwrn-LhVMW5a47AnpZtUMe_5yF4ubl-Ht-hyez2fjyaoJoyHlHJcc0ZywtWqgpTXGVaaU4KPWx0w3TDsS7Kgst04WWjc43LsqhIxhlVOqMlPQSnfe7Ku_e1ClEs3Nrb9KTI0io5HTK2pbKeSl8PwSstVt4spe8EwWJbiOgLEakQ8VOI6JKJ9qaQYPum_F_0P65vbZGS-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186634559</pqid></control><display><type>article</type><title>Characterization and Photoluminescent, Photocatalytic and Antimicrobial Properties of Boron-Doped TiO2 Nanoparticles Obtained by Microwave-Assisted Solvothermic Method</title><source>SpringerLink Journals</source><creator>Andrade Neto, N. F. ; Zanatta, P. ; Nascimento, L. E. ; Nascimento, R. M. ; Bomio, M. R. D. ; Motta, F. V.</creator><creatorcontrib>Andrade Neto, N. F. ; Zanatta, P. ; Nascimento, L. E. ; Nascimento, R. M. ; Bomio, M. R. D. ; Motta, F. V.</creatorcontrib><description>Boron doped TiO
2
:
x
B (
x
= 0 mol.%, 1 mol.%, 2 mol.%, 4 mol.% and 8 mol.%) was quickly synthesized by a microwave-assisted solvothermic method at 140°C for 10 min. The nanoparticles obtained were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscopy, photoluminescence, field emission scanning electron microscopy, electron microscopy and diffuse optical reflectance. The photocatalytic properties were estimated against methylene blue dye. The antimicrobial activity was measured by the disc diffusion technique against
S. aureus
and
E. coli
bacteria. The XRD patterns show that there was no formation of secondary phases and that all the peaks correspond to the anatase phase of TiO
2
. Rietveld’s refinement showed that the addition of B
3+
in the TiO
2
lattice promotes a reduction in the size of the crystallites and this reduction it effectively increases the degradation capacity of the methylene blue dye, which after 50 min the 8%B sample degraded completely, while the pure TiO
2
sample reduced its concentration by 95%. Boron-doped TiO
2
was effective when reused and after the third cycle the photocatalytic activity of the powders was maintained. In addition, the incorporation of 8%B in the TiO
2
lattice resulted in an increase from 8.66 mm to 15.61 mm and 9.04 mm to 13.65 mm in the inhibition halos of the
S. aureus
and
E. coli
bacteria, respectively.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-019-07076-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anatase ; Antiinfectives and antibacterials ; Antimicrobial agents ; Bacteria ; Boron ; Catalytic activity ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystallites ; Dyes ; E coli ; Electronics and Microelectronics ; Field emission microscopy ; Fourier transforms ; Halos ; Instrumentation ; Materials Science ; Methylene blue ; Microscopy ; Nanoparticles ; Optical and Electronic Materials ; Optical properties ; Photocatalysis ; Photoluminescence ; Raman spectroscopy ; Reduction ; Reflectance ; Scanning electron microscopy ; Solid State Physics ; Spectrum analysis ; Titanium dioxide ; X-ray diffraction</subject><ispartof>Journal of electronic materials, 2019-05, Vol.48 (5), p.3145-3156</ispartof><rights>The Minerals, Metals & Materials Society 2019</rights><rights>Journal of Electronic Materials is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-960c6557859eb030b2fef618f4dfd5fd60f8986ad6069df7f0998b12653ef2393</citedby><cites>FETCH-LOGICAL-c356t-960c6557859eb030b2fef618f4dfd5fd60f8986ad6069df7f0998b12653ef2393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-019-07076-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-019-07076-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Andrade Neto, N. F.</creatorcontrib><creatorcontrib>Zanatta, P.</creatorcontrib><creatorcontrib>Nascimento, L. E.</creatorcontrib><creatorcontrib>Nascimento, R. M.</creatorcontrib><creatorcontrib>Bomio, M. R. D.</creatorcontrib><creatorcontrib>Motta, F. V.</creatorcontrib><title>Characterization and Photoluminescent, Photocatalytic and Antimicrobial Properties of Boron-Doped TiO2 Nanoparticles Obtained by Microwave-Assisted Solvothermic Method</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Boron doped TiO
2
:
x
B (
x
= 0 mol.%, 1 mol.%, 2 mol.%, 4 mol.% and 8 mol.%) was quickly synthesized by a microwave-assisted solvothermic method at 140°C for 10 min. The nanoparticles obtained were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscopy, photoluminescence, field emission scanning electron microscopy, electron microscopy and diffuse optical reflectance. The photocatalytic properties were estimated against methylene blue dye. The antimicrobial activity was measured by the disc diffusion technique against
S. aureus
and
E. coli
bacteria. The XRD patterns show that there was no formation of secondary phases and that all the peaks correspond to the anatase phase of TiO
2
. Rietveld’s refinement showed that the addition of B
3+
in the TiO
2
lattice promotes a reduction in the size of the crystallites and this reduction it effectively increases the degradation capacity of the methylene blue dye, which after 50 min the 8%B sample degraded completely, while the pure TiO
2
sample reduced its concentration by 95%. Boron-doped TiO
2
was effective when reused and after the third cycle the photocatalytic activity of the powders was maintained. In addition, the incorporation of 8%B in the TiO
2
lattice resulted in an increase from 8.66 mm to 15.61 mm and 9.04 mm to 13.65 mm in the inhibition halos of the
S. aureus
and
E. coli
bacteria, respectively.</description><subject>Anatase</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial agents</subject><subject>Bacteria</subject><subject>Boron</subject><subject>Catalytic activity</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystallites</subject><subject>Dyes</subject><subject>E coli</subject><subject>Electronics and Microelectronics</subject><subject>Field emission microscopy</subject><subject>Fourier transforms</subject><subject>Halos</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Methylene blue</subject><subject>Microscopy</subject><subject>Nanoparticles</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Photocatalysis</subject><subject>Photoluminescence</subject><subject>Raman spectroscopy</subject><subject>Reduction</subject><subject>Reflectance</subject><subject>Scanning electron microscopy</subject><subject>Solid State Physics</subject><subject>Spectrum analysis</subject><subject>Titanium dioxide</subject><subject>X-ray diffraction</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kctOAyEYhYnRxHp5AVckbkVhKMzMstZr0loTNXFHmBmwNFOoQGvGF_I1pY6JO1eQ83_nQP4DwAnB5wTj_CIQwvkQYVIinOOco24HDAgbUkQK_roLBphyglhG2T44CGGBMWGkIAPwNZ5LL-uovPmU0TgLpW3g49xF166XxqpQKxvPeqWWUbZdNPUPNLLRLE3tXWVkCx-9WykfjQrQaXjpvLPoKkkNfDazDD5I61Yyzes2EbMqypTdwKqD023Eh9woNArBhJjUJ9duXJwrn-LhVMW5a47AnpZtUMe_5yF4ubl-Ht-hyez2fjyaoJoyHlHJcc0ZywtWqgpTXGVaaU4KPWx0w3TDsS7Kgst04WWjc43LsqhIxhlVOqMlPQSnfe7Ku_e1ClEs3Nrb9KTI0io5HTK2pbKeSl8PwSstVt4spe8EwWJbiOgLEakQ8VOI6JKJ9qaQYPum_F_0P65vbZGS-Q</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Andrade Neto, N. F.</creator><creator>Zanatta, P.</creator><creator>Nascimento, L. E.</creator><creator>Nascimento, R. M.</creator><creator>Bomio, M. R. D.</creator><creator>Motta, F. V.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20190501</creationdate><title>Characterization and Photoluminescent, Photocatalytic and Antimicrobial Properties of Boron-Doped TiO2 Nanoparticles Obtained by Microwave-Assisted Solvothermic Method</title><author>Andrade Neto, N. F. ; Zanatta, P. ; Nascimento, L. E. ; Nascimento, R. M. ; Bomio, M. R. D. ; Motta, F. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-960c6557859eb030b2fef618f4dfd5fd60f8986ad6069df7f0998b12653ef2393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anatase</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial agents</topic><topic>Bacteria</topic><topic>Boron</topic><topic>Catalytic activity</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystallites</topic><topic>Dyes</topic><topic>E coli</topic><topic>Electronics and Microelectronics</topic><topic>Field emission microscopy</topic><topic>Fourier transforms</topic><topic>Halos</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Methylene blue</topic><topic>Microscopy</topic><topic>Nanoparticles</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Photocatalysis</topic><topic>Photoluminescence</topic><topic>Raman spectroscopy</topic><topic>Reduction</topic><topic>Reflectance</topic><topic>Scanning electron microscopy</topic><topic>Solid State Physics</topic><topic>Spectrum analysis</topic><topic>Titanium dioxide</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andrade Neto, N. F.</creatorcontrib><creatorcontrib>Zanatta, P.</creatorcontrib><creatorcontrib>Nascimento, L. E.</creatorcontrib><creatorcontrib>Nascimento, R. M.</creatorcontrib><creatorcontrib>Bomio, M. R. D.</creatorcontrib><creatorcontrib>Motta, F. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrade Neto, N. F.</au><au>Zanatta, P.</au><au>Nascimento, L. E.</au><au>Nascimento, R. M.</au><au>Bomio, M. R. D.</au><au>Motta, F. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization and Photoluminescent, Photocatalytic and Antimicrobial Properties of Boron-Doped TiO2 Nanoparticles Obtained by Microwave-Assisted Solvothermic Method</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>48</volume><issue>5</issue><spage>3145</spage><epage>3156</epage><pages>3145-3156</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Boron doped TiO
2
:
x
B (
x
= 0 mol.%, 1 mol.%, 2 mol.%, 4 mol.% and 8 mol.%) was quickly synthesized by a microwave-assisted solvothermic method at 140°C for 10 min. The nanoparticles obtained were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscopy, photoluminescence, field emission scanning electron microscopy, electron microscopy and diffuse optical reflectance. The photocatalytic properties were estimated against methylene blue dye. The antimicrobial activity was measured by the disc diffusion technique against
S. aureus
and
E. coli
bacteria. The XRD patterns show that there was no formation of secondary phases and that all the peaks correspond to the anatase phase of TiO
2
. Rietveld’s refinement showed that the addition of B
3+
in the TiO
2
lattice promotes a reduction in the size of the crystallites and this reduction it effectively increases the degradation capacity of the methylene blue dye, which after 50 min the 8%B sample degraded completely, while the pure TiO
2
sample reduced its concentration by 95%. Boron-doped TiO
2
was effective when reused and after the third cycle the photocatalytic activity of the powders was maintained. In addition, the incorporation of 8%B in the TiO
2
lattice resulted in an increase from 8.66 mm to 15.61 mm and 9.04 mm to 13.65 mm in the inhibition halos of the
S. aureus
and
E. coli
bacteria, respectively.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-019-07076-y</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2019-05, Vol.48 (5), p.3145-3156 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_journals_2186634559 |
source | SpringerLink Journals |
subjects | Anatase Antiinfectives and antibacterials Antimicrobial agents Bacteria Boron Catalytic activity Characterization and Evaluation of Materials Chemistry and Materials Science Crystallites Dyes E coli Electronics and Microelectronics Field emission microscopy Fourier transforms Halos Instrumentation Materials Science Methylene blue Microscopy Nanoparticles Optical and Electronic Materials Optical properties Photocatalysis Photoluminescence Raman spectroscopy Reduction Reflectance Scanning electron microscopy Solid State Physics Spectrum analysis Titanium dioxide X-ray diffraction |
title | Characterization and Photoluminescent, Photocatalytic and Antimicrobial Properties of Boron-Doped TiO2 Nanoparticles Obtained by Microwave-Assisted Solvothermic Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A07%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20and%20Photoluminescent,%20Photocatalytic%20and%20Antimicrobial%20Properties%20of%20Boron-Doped%20TiO2%20Nanoparticles%20Obtained%20by%20Microwave-Assisted%20Solvothermic%20Method&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Andrade%20Neto,%20N.%20F.&rft.date=2019-05-01&rft.volume=48&rft.issue=5&rft.spage=3145&rft.epage=3156&rft.pages=3145-3156&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-019-07076-y&rft_dat=%3Cproquest_cross%3E2186634559%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186634559&rft_id=info:pmid/&rfr_iscdi=true |