Characterization and Photoluminescent, Photocatalytic and Antimicrobial Properties of Boron-Doped TiO2 Nanoparticles Obtained by Microwave-Assisted Solvothermic Method

Boron doped TiO 2 : x B ( x  = 0 mol.%, 1 mol.%, 2 mol.%, 4 mol.% and 8 mol.%) was quickly synthesized by a microwave-assisted solvothermic method at 140°C for 10 min. The nanoparticles obtained were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2019-05, Vol.48 (5), p.3145-3156
Hauptverfasser: Andrade Neto, N. F., Zanatta, P., Nascimento, L. E., Nascimento, R. M., Bomio, M. R. D., Motta, F. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3156
container_issue 5
container_start_page 3145
container_title Journal of electronic materials
container_volume 48
creator Andrade Neto, N. F.
Zanatta, P.
Nascimento, L. E.
Nascimento, R. M.
Bomio, M. R. D.
Motta, F. V.
description Boron doped TiO 2 : x B ( x  = 0 mol.%, 1 mol.%, 2 mol.%, 4 mol.% and 8 mol.%) was quickly synthesized by a microwave-assisted solvothermic method at 140°C for 10 min. The nanoparticles obtained were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscopy, photoluminescence, field emission scanning electron microscopy, electron microscopy and diffuse optical reflectance. The photocatalytic properties were estimated against methylene blue dye. The antimicrobial activity was measured by the disc diffusion technique against S. aureus and E. coli bacteria. The XRD patterns show that there was no formation of secondary phases and that all the peaks correspond to the anatase phase of TiO 2 . Rietveld’s refinement showed that the addition of B 3+ in the TiO 2 lattice promotes a reduction in the size of the crystallites and this reduction it effectively increases the degradation capacity of the methylene blue dye, which after 50 min the 8%B sample degraded completely, while the pure TiO 2 sample reduced its concentration by 95%. Boron-doped TiO 2 was effective when reused and after the third cycle the photocatalytic activity of the powders was maintained. In addition, the incorporation of 8%B in the TiO 2 lattice resulted in an increase from 8.66 mm to 15.61 mm and 9.04 mm to 13.65 mm in the inhibition halos of the S. aureus and E. coli bacteria, respectively.
doi_str_mv 10.1007/s11664-019-07076-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2186634559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186634559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-960c6557859eb030b2fef618f4dfd5fd60f8986ad6069df7f0998b12653ef2393</originalsourceid><addsrcrecordid>eNp9kctOAyEYhYnRxHp5AVckbkVhKMzMstZr0loTNXFHmBmwNFOoQGvGF_I1pY6JO1eQ83_nQP4DwAnB5wTj_CIQwvkQYVIinOOco24HDAgbUkQK_roLBphyglhG2T44CGGBMWGkIAPwNZ5LL-uovPmU0TgLpW3g49xF166XxqpQKxvPeqWWUbZdNPUPNLLRLE3tXWVkCx-9WykfjQrQaXjpvLPoKkkNfDazDD5I61Yyzes2EbMqypTdwKqD023Eh9woNArBhJjUJ9duXJwrn-LhVMW5a47AnpZtUMe_5yF4ubl-Ht-hyez2fjyaoJoyHlHJcc0ZywtWqgpTXGVaaU4KPWx0w3TDsS7Kgst04WWjc43LsqhIxhlVOqMlPQSnfe7Ku_e1ClEs3Nrb9KTI0io5HTK2pbKeSl8PwSstVt4spe8EwWJbiOgLEakQ8VOI6JKJ9qaQYPum_F_0P65vbZGS-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186634559</pqid></control><display><type>article</type><title>Characterization and Photoluminescent, Photocatalytic and Antimicrobial Properties of Boron-Doped TiO2 Nanoparticles Obtained by Microwave-Assisted Solvothermic Method</title><source>SpringerLink Journals</source><creator>Andrade Neto, N. F. ; Zanatta, P. ; Nascimento, L. E. ; Nascimento, R. M. ; Bomio, M. R. D. ; Motta, F. V.</creator><creatorcontrib>Andrade Neto, N. F. ; Zanatta, P. ; Nascimento, L. E. ; Nascimento, R. M. ; Bomio, M. R. D. ; Motta, F. V.</creatorcontrib><description>Boron doped TiO 2 : x B ( x  = 0 mol.%, 1 mol.%, 2 mol.%, 4 mol.% and 8 mol.%) was quickly synthesized by a microwave-assisted solvothermic method at 140°C for 10 min. The nanoparticles obtained were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscopy, photoluminescence, field emission scanning electron microscopy, electron microscopy and diffuse optical reflectance. The photocatalytic properties were estimated against methylene blue dye. The antimicrobial activity was measured by the disc diffusion technique against S. aureus and E. coli bacteria. The XRD patterns show that there was no formation of secondary phases and that all the peaks correspond to the anatase phase of TiO 2 . Rietveld’s refinement showed that the addition of B 3+ in the TiO 2 lattice promotes a reduction in the size of the crystallites and this reduction it effectively increases the degradation capacity of the methylene blue dye, which after 50 min the 8%B sample degraded completely, while the pure TiO 2 sample reduced its concentration by 95%. Boron-doped TiO 2 was effective when reused and after the third cycle the photocatalytic activity of the powders was maintained. In addition, the incorporation of 8%B in the TiO 2 lattice resulted in an increase from 8.66 mm to 15.61 mm and 9.04 mm to 13.65 mm in the inhibition halos of the S. aureus and E. coli bacteria, respectively.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-019-07076-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anatase ; Antiinfectives and antibacterials ; Antimicrobial agents ; Bacteria ; Boron ; Catalytic activity ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystallites ; Dyes ; E coli ; Electronics and Microelectronics ; Field emission microscopy ; Fourier transforms ; Halos ; Instrumentation ; Materials Science ; Methylene blue ; Microscopy ; Nanoparticles ; Optical and Electronic Materials ; Optical properties ; Photocatalysis ; Photoluminescence ; Raman spectroscopy ; Reduction ; Reflectance ; Scanning electron microscopy ; Solid State Physics ; Spectrum analysis ; Titanium dioxide ; X-ray diffraction</subject><ispartof>Journal of electronic materials, 2019-05, Vol.48 (5), p.3145-3156</ispartof><rights>The Minerals, Metals &amp; Materials Society 2019</rights><rights>Journal of Electronic Materials is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-960c6557859eb030b2fef618f4dfd5fd60f8986ad6069df7f0998b12653ef2393</citedby><cites>FETCH-LOGICAL-c356t-960c6557859eb030b2fef618f4dfd5fd60f8986ad6069df7f0998b12653ef2393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-019-07076-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-019-07076-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Andrade Neto, N. F.</creatorcontrib><creatorcontrib>Zanatta, P.</creatorcontrib><creatorcontrib>Nascimento, L. E.</creatorcontrib><creatorcontrib>Nascimento, R. M.</creatorcontrib><creatorcontrib>Bomio, M. R. D.</creatorcontrib><creatorcontrib>Motta, F. V.</creatorcontrib><title>Characterization and Photoluminescent, Photocatalytic and Antimicrobial Properties of Boron-Doped TiO2 Nanoparticles Obtained by Microwave-Assisted Solvothermic Method</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Boron doped TiO 2 : x B ( x  = 0 mol.%, 1 mol.%, 2 mol.%, 4 mol.% and 8 mol.%) was quickly synthesized by a microwave-assisted solvothermic method at 140°C for 10 min. The nanoparticles obtained were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscopy, photoluminescence, field emission scanning electron microscopy, electron microscopy and diffuse optical reflectance. The photocatalytic properties were estimated against methylene blue dye. The antimicrobial activity was measured by the disc diffusion technique against S. aureus and E. coli bacteria. The XRD patterns show that there was no formation of secondary phases and that all the peaks correspond to the anatase phase of TiO 2 . Rietveld’s refinement showed that the addition of B 3+ in the TiO 2 lattice promotes a reduction in the size of the crystallites and this reduction it effectively increases the degradation capacity of the methylene blue dye, which after 50 min the 8%B sample degraded completely, while the pure TiO 2 sample reduced its concentration by 95%. Boron-doped TiO 2 was effective when reused and after the third cycle the photocatalytic activity of the powders was maintained. In addition, the incorporation of 8%B in the TiO 2 lattice resulted in an increase from 8.66 mm to 15.61 mm and 9.04 mm to 13.65 mm in the inhibition halos of the S. aureus and E. coli bacteria, respectively.</description><subject>Anatase</subject><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial agents</subject><subject>Bacteria</subject><subject>Boron</subject><subject>Catalytic activity</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystallites</subject><subject>Dyes</subject><subject>E coli</subject><subject>Electronics and Microelectronics</subject><subject>Field emission microscopy</subject><subject>Fourier transforms</subject><subject>Halos</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Methylene blue</subject><subject>Microscopy</subject><subject>Nanoparticles</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Photocatalysis</subject><subject>Photoluminescence</subject><subject>Raman spectroscopy</subject><subject>Reduction</subject><subject>Reflectance</subject><subject>Scanning electron microscopy</subject><subject>Solid State Physics</subject><subject>Spectrum analysis</subject><subject>Titanium dioxide</subject><subject>X-ray diffraction</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kctOAyEYhYnRxHp5AVckbkVhKMzMstZr0loTNXFHmBmwNFOoQGvGF_I1pY6JO1eQ83_nQP4DwAnB5wTj_CIQwvkQYVIinOOco24HDAgbUkQK_roLBphyglhG2T44CGGBMWGkIAPwNZ5LL-uovPmU0TgLpW3g49xF166XxqpQKxvPeqWWUbZdNPUPNLLRLE3tXWVkCx-9WykfjQrQaXjpvLPoKkkNfDazDD5I61Yyzes2EbMqypTdwKqD023Eh9woNArBhJjUJ9duXJwrn-LhVMW5a47AnpZtUMe_5yF4ubl-Ht-hyez2fjyaoJoyHlHJcc0ZywtWqgpTXGVaaU4KPWx0w3TDsS7Kgst04WWjc43LsqhIxhlVOqMlPQSnfe7Ku_e1ClEs3Nrb9KTI0io5HTK2pbKeSl8PwSstVt4spe8EwWJbiOgLEakQ8VOI6JKJ9qaQYPum_F_0P65vbZGS-Q</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Andrade Neto, N. F.</creator><creator>Zanatta, P.</creator><creator>Nascimento, L. E.</creator><creator>Nascimento, R. M.</creator><creator>Bomio, M. R. D.</creator><creator>Motta, F. V.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20190501</creationdate><title>Characterization and Photoluminescent, Photocatalytic and Antimicrobial Properties of Boron-Doped TiO2 Nanoparticles Obtained by Microwave-Assisted Solvothermic Method</title><author>Andrade Neto, N. F. ; Zanatta, P. ; Nascimento, L. E. ; Nascimento, R. M. ; Bomio, M. R. D. ; Motta, F. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-960c6557859eb030b2fef618f4dfd5fd60f8986ad6069df7f0998b12653ef2393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anatase</topic><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial agents</topic><topic>Bacteria</topic><topic>Boron</topic><topic>Catalytic activity</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystallites</topic><topic>Dyes</topic><topic>E coli</topic><topic>Electronics and Microelectronics</topic><topic>Field emission microscopy</topic><topic>Fourier transforms</topic><topic>Halos</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Methylene blue</topic><topic>Microscopy</topic><topic>Nanoparticles</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Photocatalysis</topic><topic>Photoluminescence</topic><topic>Raman spectroscopy</topic><topic>Reduction</topic><topic>Reflectance</topic><topic>Scanning electron microscopy</topic><topic>Solid State Physics</topic><topic>Spectrum analysis</topic><topic>Titanium dioxide</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andrade Neto, N. F.</creatorcontrib><creatorcontrib>Zanatta, P.</creatorcontrib><creatorcontrib>Nascimento, L. E.</creatorcontrib><creatorcontrib>Nascimento, R. M.</creatorcontrib><creatorcontrib>Bomio, M. R. D.</creatorcontrib><creatorcontrib>Motta, F. V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrade Neto, N. F.</au><au>Zanatta, P.</au><au>Nascimento, L. E.</au><au>Nascimento, R. M.</au><au>Bomio, M. R. D.</au><au>Motta, F. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization and Photoluminescent, Photocatalytic and Antimicrobial Properties of Boron-Doped TiO2 Nanoparticles Obtained by Microwave-Assisted Solvothermic Method</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>48</volume><issue>5</issue><spage>3145</spage><epage>3156</epage><pages>3145-3156</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Boron doped TiO 2 : x B ( x  = 0 mol.%, 1 mol.%, 2 mol.%, 4 mol.% and 8 mol.%) was quickly synthesized by a microwave-assisted solvothermic method at 140°C for 10 min. The nanoparticles obtained were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscopy, photoluminescence, field emission scanning electron microscopy, electron microscopy and diffuse optical reflectance. The photocatalytic properties were estimated against methylene blue dye. The antimicrobial activity was measured by the disc diffusion technique against S. aureus and E. coli bacteria. The XRD patterns show that there was no formation of secondary phases and that all the peaks correspond to the anatase phase of TiO 2 . Rietveld’s refinement showed that the addition of B 3+ in the TiO 2 lattice promotes a reduction in the size of the crystallites and this reduction it effectively increases the degradation capacity of the methylene blue dye, which after 50 min the 8%B sample degraded completely, while the pure TiO 2 sample reduced its concentration by 95%. Boron-doped TiO 2 was effective when reused and after the third cycle the photocatalytic activity of the powders was maintained. In addition, the incorporation of 8%B in the TiO 2 lattice resulted in an increase from 8.66 mm to 15.61 mm and 9.04 mm to 13.65 mm in the inhibition halos of the S. aureus and E. coli bacteria, respectively.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-019-07076-y</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2019-05, Vol.48 (5), p.3145-3156
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2186634559
source SpringerLink Journals
subjects Anatase
Antiinfectives and antibacterials
Antimicrobial agents
Bacteria
Boron
Catalytic activity
Characterization and Evaluation of Materials
Chemistry and Materials Science
Crystallites
Dyes
E coli
Electronics and Microelectronics
Field emission microscopy
Fourier transforms
Halos
Instrumentation
Materials Science
Methylene blue
Microscopy
Nanoparticles
Optical and Electronic Materials
Optical properties
Photocatalysis
Photoluminescence
Raman spectroscopy
Reduction
Reflectance
Scanning electron microscopy
Solid State Physics
Spectrum analysis
Titanium dioxide
X-ray diffraction
title Characterization and Photoluminescent, Photocatalytic and Antimicrobial Properties of Boron-Doped TiO2 Nanoparticles Obtained by Microwave-Assisted Solvothermic Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A07%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20and%20Photoluminescent,%20Photocatalytic%20and%20Antimicrobial%20Properties%20of%20Boron-Doped%20TiO2%20Nanoparticles%20Obtained%20by%20Microwave-Assisted%20Solvothermic%20Method&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Andrade%20Neto,%20N.%20F.&rft.date=2019-05-01&rft.volume=48&rft.issue=5&rft.spage=3145&rft.epage=3156&rft.pages=3145-3156&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-019-07076-y&rft_dat=%3Cproquest_cross%3E2186634559%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186634559&rft_id=info:pmid/&rfr_iscdi=true