Improvement of approximations for the distributions of multinomial goodness-of-fit statistics under nonlocal alternatives

Cressie and Read (J. Roy. Statist. Soc. B 46 (1984) 440–464) introduced the power divergence statistics, R a , as multinomial goodness-of-fit statistics. Each R a has a limiting noncentral chi-square distribution under a local alternative and has a limiting normal distribution under a nonlocal alter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of multivariate analysis 2004-11, Vol.91 (2), p.199-223
Hauptverfasser: Sekiya, Yuri, Taneichi, Nobuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 223
container_issue 2
container_start_page 199
container_title Journal of multivariate analysis
container_volume 91
creator Sekiya, Yuri
Taneichi, Nobuhiro
description Cressie and Read (J. Roy. Statist. Soc. B 46 (1984) 440–464) introduced the power divergence statistics, R a , as multinomial goodness-of-fit statistics. Each R a has a limiting noncentral chi-square distribution under a local alternative and has a limiting normal distribution under a nonlocal alternative. Taneichi et al. (J. Multivariate Anal. 81 (2002) 335–359) derived an asymptotic approximation for the distribution of R a under local alternatives. In this paper, using multivariate Edgeworth expansion for a continuous distribution, we show how the approximation based on the limiting normal distribution of R a under nonlocal alternatives can be improved. We apply the expansion to the power approximation for R a . The results of numerical investigation show that the proposed power approximation is very effective for the likelihood ratio test.
doi_str_mv 10.1016/S0047-259X(03)00130-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_218662115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0047259X03001301</els_id><sourcerecordid>703900721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-de9e44067672964f168506c0942ccbdeb3146070c262de54df052625f6411bf73</originalsourceid><addsrcrecordid>eNqFkEuLFDEUhQtRsB39CUIQBF2U5lWprpXI4GNkwIUK7kI6uXHSVCVlkirsf-_tqWFcurjJTXLO5eRrmueMvmGUqbffKJV9y7vh5ysqXlPKBG3Zg2bH6NC1PZfiYbO7lzxunpRyRBHrerlrTlfTnNMKE8RKkidmxuOfMJkaUizEp0zqDRAXSs3hsGy3qJuWsYaYpmBG8islF6GUNvnWh0pKRXepwRayRAeZxBTHZFFpxgo54usK5WnzyJuxwLO7_aL58fHD98vP7fXXT1eX769bK4e-tg4GkJKqXvV8UNIzte-osnSQ3NqDg4NgUtGeWq64g046TztsO68kYwffi4vmxTYXP_Z7gVL1MS0YYiyas71SHEmgqNtENqdSMng9Z4SQT5pRfYasbyHrM0FNhb6FrBn6vmy-DDPYexMAHKfVRKNXLczAcDlhcZyBWzi3WDMWGwbNudA3dcJhL--SmoK0fDbRhvIviWJiz-U57LtNB4htDZB1sQGiBRcy2KpdCv-J_Rc9W6yE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218662115</pqid></control><display><type>article</type><title>Improvement of approximations for the distributions of multinomial goodness-of-fit statistics under nonlocal alternatives</title><source>RePEc</source><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sekiya, Yuri ; Taneichi, Nobuhiro</creator><creatorcontrib>Sekiya, Yuri ; Taneichi, Nobuhiro</creatorcontrib><description>Cressie and Read (J. Roy. Statist. Soc. B 46 (1984) 440–464) introduced the power divergence statistics, R a , as multinomial goodness-of-fit statistics. Each R a has a limiting noncentral chi-square distribution under a local alternative and has a limiting normal distribution under a nonlocal alternative. Taneichi et al. (J. Multivariate Anal. 81 (2002) 335–359) derived an asymptotic approximation for the distribution of R a under local alternatives. In this paper, using multivariate Edgeworth expansion for a continuous distribution, we show how the approximation based on the limiting normal distribution of R a under nonlocal alternatives can be improved. We apply the expansion to the power approximation for R a . The results of numerical investigation show that the proposed power approximation is very effective for the likelihood ratio test.</description><identifier>ISSN: 0047-259X</identifier><identifier>EISSN: 1095-7243</identifier><identifier>DOI: 10.1016/S0047-259X(03)00130-1</identifier><identifier>CODEN: JMVAAI</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Approximation ; Distribution ; Distribution theory ; Exact sciences and technology ; Goodness-of-fit statistics ; Likelihood ratio test ; Limit theorems ; Mathematical models ; Mathematics ; Multinomial distribution ; Multinomial distribution Goodness-of-fit statistics Power approximation Likelihood ratio test Nonlocal alternative ; Multivariate analysis ; Nonlocal alternative ; Normal distribution ; Power approximation ; Probability and statistics ; Probability theory and stochastic processes ; Sciences and techniques of general use ; Statistical analysis ; Statistics ; Theory</subject><ispartof>Journal of multivariate analysis, 2004-11, Vol.91 (2), p.199-223</ispartof><rights>2003 Elsevier Inc.</rights><rights>2004 INIST-CNRS</rights><rights>Copyright Taylor &amp; Francis Group Nov 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-de9e44067672964f168506c0942ccbdeb3146070c262de54df052625f6411bf73</citedby><cites>FETCH-LOGICAL-c497t-de9e44067672964f168506c0942ccbdeb3146070c262de54df052625f6411bf73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0047-259X(03)00130-1$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,4008,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16138245$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/eeejmvana/v_3a91_3ay_3a2004_3ai_3a2_3ap_3a199-223.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Sekiya, Yuri</creatorcontrib><creatorcontrib>Taneichi, Nobuhiro</creatorcontrib><title>Improvement of approximations for the distributions of multinomial goodness-of-fit statistics under nonlocal alternatives</title><title>Journal of multivariate analysis</title><description>Cressie and Read (J. Roy. Statist. Soc. B 46 (1984) 440–464) introduced the power divergence statistics, R a , as multinomial goodness-of-fit statistics. Each R a has a limiting noncentral chi-square distribution under a local alternative and has a limiting normal distribution under a nonlocal alternative. Taneichi et al. (J. Multivariate Anal. 81 (2002) 335–359) derived an asymptotic approximation for the distribution of R a under local alternatives. In this paper, using multivariate Edgeworth expansion for a continuous distribution, we show how the approximation based on the limiting normal distribution of R a under nonlocal alternatives can be improved. We apply the expansion to the power approximation for R a . The results of numerical investigation show that the proposed power approximation is very effective for the likelihood ratio test.</description><subject>Approximation</subject><subject>Distribution</subject><subject>Distribution theory</subject><subject>Exact sciences and technology</subject><subject>Goodness-of-fit statistics</subject><subject>Likelihood ratio test</subject><subject>Limit theorems</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Multinomial distribution</subject><subject>Multinomial distribution Goodness-of-fit statistics Power approximation Likelihood ratio test Nonlocal alternative</subject><subject>Multivariate analysis</subject><subject>Nonlocal alternative</subject><subject>Normal distribution</subject><subject>Power approximation</subject><subject>Probability and statistics</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><subject>Statistical analysis</subject><subject>Statistics</subject><subject>Theory</subject><issn>0047-259X</issn><issn>1095-7243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkEuLFDEUhQtRsB39CUIQBF2U5lWprpXI4GNkwIUK7kI6uXHSVCVlkirsf-_tqWFcurjJTXLO5eRrmueMvmGUqbffKJV9y7vh5ysqXlPKBG3Zg2bH6NC1PZfiYbO7lzxunpRyRBHrerlrTlfTnNMKE8RKkidmxuOfMJkaUizEp0zqDRAXSs3hsGy3qJuWsYaYpmBG8islF6GUNvnWh0pKRXepwRayRAeZxBTHZFFpxgo54usK5WnzyJuxwLO7_aL58fHD98vP7fXXT1eX769bK4e-tg4GkJKqXvV8UNIzte-osnSQ3NqDg4NgUtGeWq64g046TztsO68kYwffi4vmxTYXP_Z7gVL1MS0YYiyas71SHEmgqNtENqdSMng9Z4SQT5pRfYasbyHrM0FNhb6FrBn6vmy-DDPYexMAHKfVRKNXLczAcDlhcZyBWzi3WDMWGwbNudA3dcJhL--SmoK0fDbRhvIviWJiz-U57LtNB4htDZB1sQGiBRcy2KpdCv-J_Rc9W6yE</recordid><startdate>20041101</startdate><enddate>20041101</enddate><creator>Sekiya, Yuri</creator><creator>Taneichi, Nobuhiro</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Taylor &amp; Francis LLC</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20041101</creationdate><title>Improvement of approximations for the distributions of multinomial goodness-of-fit statistics under nonlocal alternatives</title><author>Sekiya, Yuri ; Taneichi, Nobuhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-de9e44067672964f168506c0942ccbdeb3146070c262de54df052625f6411bf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Approximation</topic><topic>Distribution</topic><topic>Distribution theory</topic><topic>Exact sciences and technology</topic><topic>Goodness-of-fit statistics</topic><topic>Likelihood ratio test</topic><topic>Limit theorems</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Multinomial distribution</topic><topic>Multinomial distribution Goodness-of-fit statistics Power approximation Likelihood ratio test Nonlocal alternative</topic><topic>Multivariate analysis</topic><topic>Nonlocal alternative</topic><topic>Normal distribution</topic><topic>Power approximation</topic><topic>Probability and statistics</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><topic>Statistical analysis</topic><topic>Statistics</topic><topic>Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sekiya, Yuri</creatorcontrib><creatorcontrib>Taneichi, Nobuhiro</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Journal of multivariate analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sekiya, Yuri</au><au>Taneichi, Nobuhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvement of approximations for the distributions of multinomial goodness-of-fit statistics under nonlocal alternatives</atitle><jtitle>Journal of multivariate analysis</jtitle><date>2004-11-01</date><risdate>2004</risdate><volume>91</volume><issue>2</issue><spage>199</spage><epage>223</epage><pages>199-223</pages><issn>0047-259X</issn><eissn>1095-7243</eissn><coden>JMVAAI</coden><abstract>Cressie and Read (J. Roy. Statist. Soc. B 46 (1984) 440–464) introduced the power divergence statistics, R a , as multinomial goodness-of-fit statistics. Each R a has a limiting noncentral chi-square distribution under a local alternative and has a limiting normal distribution under a nonlocal alternative. Taneichi et al. (J. Multivariate Anal. 81 (2002) 335–359) derived an asymptotic approximation for the distribution of R a under local alternatives. In this paper, using multivariate Edgeworth expansion for a continuous distribution, we show how the approximation based on the limiting normal distribution of R a under nonlocal alternatives can be improved. We apply the expansion to the power approximation for R a . The results of numerical investigation show that the proposed power approximation is very effective for the likelihood ratio test.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1016/S0047-259X(03)00130-1</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0047-259X
ispartof Journal of multivariate analysis, 2004-11, Vol.91 (2), p.199-223
issn 0047-259X
1095-7243
language eng
recordid cdi_proquest_journals_218662115
source RePEc; Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Approximation
Distribution
Distribution theory
Exact sciences and technology
Goodness-of-fit statistics
Likelihood ratio test
Limit theorems
Mathematical models
Mathematics
Multinomial distribution
Multinomial distribution Goodness-of-fit statistics Power approximation Likelihood ratio test Nonlocal alternative
Multivariate analysis
Nonlocal alternative
Normal distribution
Power approximation
Probability and statistics
Probability theory and stochastic processes
Sciences and techniques of general use
Statistical analysis
Statistics
Theory
title Improvement of approximations for the distributions of multinomial goodness-of-fit statistics under nonlocal alternatives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvement%20of%20approximations%20for%20the%20distributions%20of%20multinomial%20goodness-of-fit%20statistics%20under%20nonlocal%20alternatives&rft.jtitle=Journal%20of%20multivariate%20analysis&rft.au=Sekiya,%20Yuri&rft.date=2004-11-01&rft.volume=91&rft.issue=2&rft.spage=199&rft.epage=223&rft.pages=199-223&rft.issn=0047-259X&rft.eissn=1095-7243&rft.coden=JMVAAI&rft_id=info:doi/10.1016/S0047-259X(03)00130-1&rft_dat=%3Cproquest_cross%3E703900721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218662115&rft_id=info:pmid/&rft_els_id=S0047259X03001301&rfr_iscdi=true