Applying particle swarm optimisation to dynamic lot sizing with batch ordering

This paper investigates the applicability of particle swarm optimisation (PSO) to the dynamic lot sizing problem with batch ordering. Backorders are allowed to account for discrepancies created by the batch ordering constraint. The PSO solution is compared with solutions generated using both a modif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of production research 2009-06, Vol.47 (12), p.3345-3361
Hauptverfasser: Gaafar, L. K., Aly, A. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3361
container_issue 12
container_start_page 3345
container_title International journal of production research
container_volume 47
creator Gaafar, L. K.
Aly, A. S.
description This paper investigates the applicability of particle swarm optimisation (PSO) to the dynamic lot sizing problem with batch ordering. Backorders are allowed to account for discrepancies created by the batch ordering constraint. The PSO solution is compared with solutions generated using both a modified Silver-Meal (MSM) heuristic and a genetic algorithm (GA). A 2 3 factorial experiment is used to compare the various approaches and to examine the influence of three factors on their performance. The investigated factors include the demand pattern, the batch size, and the planning horizon. The comparisons are based on the relative frequency of obtaining the optimum solution and the percentage deviation from the optimum solution. In general, the PSO outperformed both the MSM and the GA by producing the lowest cost solution on almost all experimental runs. The planning horizon is the most significant factor affecting the performance of all heuristics. The MSM is affected by all investigated factors while the PSO is not affected by the batch size and the GA is not affected by the demand pattern. The PSO has a clear performance edge in dealing with seasonal demand patterns.
doi_str_mv 10.1080/00207540701581783
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_218661990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1688533911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-cb609994220fe8c0e923d105f7f63a52d7253dc81c80cfe159f9f6f19aef4d363</originalsourceid><addsrcrecordid>eNqFkE1LHTEUhkOp0Ntrf0B3odDuRk8mH5NANyJ-gehGobsQM0mNZCbTJJfr9dc7l2u7UKhnEzh5nnNeDkJfCRwQkHAI0ELHGXRAuCSdpB_QglAhGi7lr49osf1vZoB-Qp9LeYC5uGQLdHU0TXETxt94MrkGGx0ua5MHnKYahlBMDWnENeF-M5ohWBxTxSU8bY11qPf4zlR7j1PuXZ57-2jPm1jcl5d3iW5PT26Oz5vL67OL46PLxjLBa2PvBCilWNuCd9KCUy3tCXDfeUENb_uu5bS3klgJ1jvClVdeeKKM86yngi7Rj93cKac_K1eqnrNaF6MZXVoVTZkiwJScwW-vwIe0yuOcTbdECkGUghkiO8jmVEp2Xk85DCZvNAG9Pa9-c97Z-f4y2BRros9mtKH8E1vCGHCyDfBzx4XRpzyYdcqx19VsYsp_Jfq_Nd27-htL18dKnwHk-J8d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218661990</pqid></control><display><type>article</type><title>Applying particle swarm optimisation to dynamic lot sizing with batch ordering</title><source>Business Source Complete</source><source>Taylor &amp; Francis:Master (3349 titles)</source><creator>Gaafar, L. K. ; Aly, A. S.</creator><creatorcontrib>Gaafar, L. K. ; Aly, A. S.</creatorcontrib><description>This paper investigates the applicability of particle swarm optimisation (PSO) to the dynamic lot sizing problem with batch ordering. Backorders are allowed to account for discrepancies created by the batch ordering constraint. The PSO solution is compared with solutions generated using both a modified Silver-Meal (MSM) heuristic and a genetic algorithm (GA). A 2 3 factorial experiment is used to compare the various approaches and to examine the influence of three factors on their performance. The investigated factors include the demand pattern, the batch size, and the planning horizon. The comparisons are based on the relative frequency of obtaining the optimum solution and the percentage deviation from the optimum solution. In general, the PSO outperformed both the MSM and the GA by producing the lowest cost solution on almost all experimental runs. The planning horizon is the most significant factor affecting the performance of all heuristics. The MSM is affected by all investigated factors while the PSO is not affected by the batch size and the GA is not affected by the demand pattern. The PSO has a clear performance edge in dealing with seasonal demand patterns.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207540701581783</identifier><identifier>CODEN: IJPRB8</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis Group</publisher><subject>Applied sciences ; batch ordering ; Comparative analysis ; Exact sciences and technology ; Factorial experiments ; Genetic algorithms ; Heuristic ; Inventory control, production control. Distribution ; lot sizing ; Operational research and scientific management ; Operational research. Management science ; Optimization ; Order quantity ; particle swarm optimisation ; Silver-Meal ; Studies</subject><ispartof>International journal of production research, 2009-06, Vol.47 (12), p.3345-3361</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2009</rights><rights>2009 INIST-CNRS</rights><rights>Copyright Taylor &amp; Francis Group Jan 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-cb609994220fe8c0e923d105f7f63a52d7253dc81c80cfe159f9f6f19aef4d363</citedby><cites>FETCH-LOGICAL-c465t-cb609994220fe8c0e923d105f7f63a52d7253dc81c80cfe159f9f6f19aef4d363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207540701581783$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207540701581783$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21440518$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaafar, L. K.</creatorcontrib><creatorcontrib>Aly, A. S.</creatorcontrib><title>Applying particle swarm optimisation to dynamic lot sizing with batch ordering</title><title>International journal of production research</title><description>This paper investigates the applicability of particle swarm optimisation (PSO) to the dynamic lot sizing problem with batch ordering. Backorders are allowed to account for discrepancies created by the batch ordering constraint. The PSO solution is compared with solutions generated using both a modified Silver-Meal (MSM) heuristic and a genetic algorithm (GA). A 2 3 factorial experiment is used to compare the various approaches and to examine the influence of three factors on their performance. The investigated factors include the demand pattern, the batch size, and the planning horizon. The comparisons are based on the relative frequency of obtaining the optimum solution and the percentage deviation from the optimum solution. In general, the PSO outperformed both the MSM and the GA by producing the lowest cost solution on almost all experimental runs. The planning horizon is the most significant factor affecting the performance of all heuristics. The MSM is affected by all investigated factors while the PSO is not affected by the batch size and the GA is not affected by the demand pattern. The PSO has a clear performance edge in dealing with seasonal demand patterns.</description><subject>Applied sciences</subject><subject>batch ordering</subject><subject>Comparative analysis</subject><subject>Exact sciences and technology</subject><subject>Factorial experiments</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Inventory control, production control. Distribution</subject><subject>lot sizing</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization</subject><subject>Order quantity</subject><subject>particle swarm optimisation</subject><subject>Silver-Meal</subject><subject>Studies</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LHTEUhkOp0Ntrf0B3odDuRk8mH5NANyJ-gehGobsQM0mNZCbTJJfr9dc7l2u7UKhnEzh5nnNeDkJfCRwQkHAI0ELHGXRAuCSdpB_QglAhGi7lr49osf1vZoB-Qp9LeYC5uGQLdHU0TXETxt94MrkGGx0ua5MHnKYahlBMDWnENeF-M5ohWBxTxSU8bY11qPf4zlR7j1PuXZ57-2jPm1jcl5d3iW5PT26Oz5vL67OL46PLxjLBa2PvBCilWNuCd9KCUy3tCXDfeUENb_uu5bS3klgJ1jvClVdeeKKM86yngi7Rj93cKac_K1eqnrNaF6MZXVoVTZkiwJScwW-vwIe0yuOcTbdECkGUghkiO8jmVEp2Xk85DCZvNAG9Pa9-c97Z-f4y2BRros9mtKH8E1vCGHCyDfBzx4XRpzyYdcqx19VsYsp_Jfq_Nd27-htL18dKnwHk-J8d</recordid><startdate>20090615</startdate><enddate>20090615</enddate><creator>Gaafar, L. K.</creator><creator>Aly, A. S.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis LLC</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090615</creationdate><title>Applying particle swarm optimisation to dynamic lot sizing with batch ordering</title><author>Gaafar, L. K. ; Aly, A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-cb609994220fe8c0e923d105f7f63a52d7253dc81c80cfe159f9f6f19aef4d363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>batch ordering</topic><topic>Comparative analysis</topic><topic>Exact sciences and technology</topic><topic>Factorial experiments</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Inventory control, production control. Distribution</topic><topic>lot sizing</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization</topic><topic>Order quantity</topic><topic>particle swarm optimisation</topic><topic>Silver-Meal</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaafar, L. K.</creatorcontrib><creatorcontrib>Aly, A. S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaafar, L. K.</au><au>Aly, A. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applying particle swarm optimisation to dynamic lot sizing with batch ordering</atitle><jtitle>International journal of production research</jtitle><date>2009-06-15</date><risdate>2009</risdate><volume>47</volume><issue>12</issue><spage>3345</spage><epage>3361</epage><pages>3345-3361</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><coden>IJPRB8</coden><abstract>This paper investigates the applicability of particle swarm optimisation (PSO) to the dynamic lot sizing problem with batch ordering. Backorders are allowed to account for discrepancies created by the batch ordering constraint. The PSO solution is compared with solutions generated using both a modified Silver-Meal (MSM) heuristic and a genetic algorithm (GA). A 2 3 factorial experiment is used to compare the various approaches and to examine the influence of three factors on their performance. The investigated factors include the demand pattern, the batch size, and the planning horizon. The comparisons are based on the relative frequency of obtaining the optimum solution and the percentage deviation from the optimum solution. In general, the PSO outperformed both the MSM and the GA by producing the lowest cost solution on almost all experimental runs. The planning horizon is the most significant factor affecting the performance of all heuristics. The MSM is affected by all investigated factors while the PSO is not affected by the batch size and the GA is not affected by the demand pattern. The PSO has a clear performance edge in dealing with seasonal demand patterns.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00207540701581783</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7543
ispartof International journal of production research, 2009-06, Vol.47 (12), p.3345-3361
issn 0020-7543
1366-588X
language eng
recordid cdi_proquest_journals_218661990
source Business Source Complete; Taylor & Francis:Master (3349 titles)
subjects Applied sciences
batch ordering
Comparative analysis
Exact sciences and technology
Factorial experiments
Genetic algorithms
Heuristic
Inventory control, production control. Distribution
lot sizing
Operational research and scientific management
Operational research. Management science
Optimization
Order quantity
particle swarm optimisation
Silver-Meal
Studies
title Applying particle swarm optimisation to dynamic lot sizing with batch ordering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A50%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applying%20particle%20swarm%20optimisation%20to%20dynamic%20lot%20sizing%20with%20batch%20ordering&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Gaafar,%20L.%20K.&rft.date=2009-06-15&rft.volume=47&rft.issue=12&rft.spage=3345&rft.epage=3361&rft.pages=3345-3361&rft.issn=0020-7543&rft.eissn=1366-588X&rft.coden=IJPRB8&rft_id=info:doi/10.1080/00207540701581783&rft_dat=%3Cproquest_infor%3E1688533911%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218661990&rft_id=info:pmid/&rfr_iscdi=true