Development of an autotrophic fermentation technique for the production of fatty acids using an engineered Ralstonia eutropha cell factory

Massive emission of CO 2 into atmosphere from consumption of carbon deposit is causing climate change. Researchers have applied metabolic engineering and synthetic biology techniques for improving CO 2 fixation efficiency in many species. One solution might be the utilization of autotrophic bacteria...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of industrial microbiology & biotechnology 2019-06, Vol.46 (6), p.783-790
Hauptverfasser: Li, Zhongkang, Xiong, Bin, Liu, Li, Li, Siwei, Xin, Xiuqing, Li, Zhi, Zhang, Xueli, Bi, ChangHao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 790
container_issue 6
container_start_page 783
container_title Journal of industrial microbiology & biotechnology
container_volume 46
creator Li, Zhongkang
Xiong, Bin
Liu, Li
Li, Siwei
Xin, Xiuqing
Li, Zhi
Zhang, Xueli
Bi, ChangHao
description Massive emission of CO 2 into atmosphere from consumption of carbon deposit is causing climate change. Researchers have applied metabolic engineering and synthetic biology techniques for improving CO 2 fixation efficiency in many species. One solution might be the utilization of autotrophic bacteria, which have great potential to be engineered into microbial cell factories for CO 2 fixation and the production of chemicals, independent of fossil resources. In this work, several pathways of Ralstonia eutropha H16 were modulated by manipulation of heterologous and endogenous genes related to fatty acid synthesis. The resulting strain B2(pCT, pFP) was able to produce 124.48 mg/g (cell dry weight) free fatty acids with fructose as carbon source, a fourfold increase over the parent strain H16. To develop a truly autotrophic fermentation technique with H 2 , CO 2 and O 2 as substrates, we assembled a relatively safe, continuous, lab-scale gas fermentation system using micro-fermentation tanks, H 2 supplied by a hydrogen generator, and keeping the H 2 to O 2 ratio at 7:1. The system was equipped with a H 2 gas alarm, rid of heat sources and placed into a fume hood to further improve the safety. With this system, the best strain B2(pCT, pFP) produced 60.64 mg free fatty acids per g biomass within 48 h, growing in minimal medium supplemented with 9 × 10 3  mL/L/h hydrogen gas. Thus, an autotrophic fermentation technique to produce fatty acids was successfully established, which might inspire further research on autotrophic gas fermentation with a safe, lab-scale setup, and provides an alternative solution for environmental and energy problems.
doi_str_mv 10.1007/s10295-019-02156-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2186615427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186615427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-4c31e3fdf466f9f22cbeb81a60c86c976948049ea1e9154c0ce4d0cc964871fb3</originalsourceid><addsrcrecordid>eNp9kMtOAyEYhYnRaL28gAtD4noUGGCYpanXxMTE6JpQ5qcd00IFxqSv4FNLWy87V5Cc75wDB6FTSi4oIc1looS1oiK0rQijQlZqB40ob2QlRC12y72WTSV4LQ7QYUpvhBDRNGwfHdREUaI4H6HPa_iAeVguwGccHDYemyGHHMNy1lvsIK4Vk_vgcQY78_37ANiFiPMM8DKGbrAbsXidyXmFje27hIfU--k6Dfy09wAROvxs5ikH3xsMw6bAYAvzefHZHOLqGO25QsDJ93mEXm9vXsb31ePT3cP46rGynLJccVtTqF3nuJSudYzZCUwUNZJYJW3byJYrwlswFFoquCUWeEesbSVXDXWT-gidb3PL68tnUtZvYYi-VGpGlZTFxJpCsS1lY0gpgtPL2C9MXGlK9Hp-vZ1fl_n1Zn6tiunsO3qYLKD7tfzsXYB6C6Qi-SnEv-5_Yr8AUIaTZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186615427</pqid></control><display><type>article</type><title>Development of an autotrophic fermentation technique for the production of fatty acids using an engineered Ralstonia eutropha cell factory</title><source>SpringerLink Journals</source><source>Oxford Journals Open Access Collection</source><creator>Li, Zhongkang ; Xiong, Bin ; Liu, Li ; Li, Siwei ; Xin, Xiuqing ; Li, Zhi ; Zhang, Xueli ; Bi, ChangHao</creator><creatorcontrib>Li, Zhongkang ; Xiong, Bin ; Liu, Li ; Li, Siwei ; Xin, Xiuqing ; Li, Zhi ; Zhang, Xueli ; Bi, ChangHao</creatorcontrib><description>Massive emission of CO 2 into atmosphere from consumption of carbon deposit is causing climate change. Researchers have applied metabolic engineering and synthetic biology techniques for improving CO 2 fixation efficiency in many species. One solution might be the utilization of autotrophic bacteria, which have great potential to be engineered into microbial cell factories for CO 2 fixation and the production of chemicals, independent of fossil resources. In this work, several pathways of Ralstonia eutropha H16 were modulated by manipulation of heterologous and endogenous genes related to fatty acid synthesis. The resulting strain B2(pCT, pFP) was able to produce 124.48 mg/g (cell dry weight) free fatty acids with fructose as carbon source, a fourfold increase over the parent strain H16. To develop a truly autotrophic fermentation technique with H 2 , CO 2 and O 2 as substrates, we assembled a relatively safe, continuous, lab-scale gas fermentation system using micro-fermentation tanks, H 2 supplied by a hydrogen generator, and keeping the H 2 to O 2 ratio at 7:1. The system was equipped with a H 2 gas alarm, rid of heat sources and placed into a fume hood to further improve the safety. With this system, the best strain B2(pCT, pFP) produced 60.64 mg free fatty acids per g biomass within 48 h, growing in minimal medium supplemented with 9 × 10 3  mL/L/h hydrogen gas. Thus, an autotrophic fermentation technique to produce fatty acids was successfully established, which might inspire further research on autotrophic gas fermentation with a safe, lab-scale setup, and provides an alternative solution for environmental and energy problems.</description><identifier>ISSN: 1367-5435</identifier><identifier>EISSN: 1476-5535</identifier><identifier>DOI: 10.1007/s10295-019-02156-8</identifier><identifier>PMID: 30810844</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Autotrophic bacteria ; Biochemistry ; Bioinformatics ; Biomedical and Life Sciences ; Biotechnology ; Carbon dioxide ; Carbon dioxide fixation ; Carbon sequestration ; Carbon sources ; Cell Culture and Bioengineering - Original Paper ; Climate change research ; Factories ; Fatty acids ; Fermentation ; Fructose ; Fume cupboards ; Genetic Engineering ; Heat sources ; Industrial engineering ; Inorganic Chemistry ; Life Sciences ; Manufacturing engineering ; Metabolic engineering ; Microbiology ; Microorganisms ; Organic chemistry ; Ralstonia eutropha ; Substrates ; Weight</subject><ispartof>Journal of industrial microbiology &amp; biotechnology, 2019-06, Vol.46 (6), p.783-790</ispartof><rights>Society for Industrial Microbiology and Biotechnology 2019. corrected publication 2019</rights><rights>Journal of Industrial Microbiology &amp; Biotechnology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-4c31e3fdf466f9f22cbeb81a60c86c976948049ea1e9154c0ce4d0cc964871fb3</citedby><cites>FETCH-LOGICAL-c412t-4c31e3fdf466f9f22cbeb81a60c86c976948049ea1e9154c0ce4d0cc964871fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10295-019-02156-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10295-019-02156-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30810844$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zhongkang</creatorcontrib><creatorcontrib>Xiong, Bin</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Li, Siwei</creatorcontrib><creatorcontrib>Xin, Xiuqing</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Zhang, Xueli</creatorcontrib><creatorcontrib>Bi, ChangHao</creatorcontrib><title>Development of an autotrophic fermentation technique for the production of fatty acids using an engineered Ralstonia eutropha cell factory</title><title>Journal of industrial microbiology &amp; biotechnology</title><addtitle>J Ind Microbiol Biotechnol</addtitle><addtitle>J Ind Microbiol Biotechnol</addtitle><description>Massive emission of CO 2 into atmosphere from consumption of carbon deposit is causing climate change. Researchers have applied metabolic engineering and synthetic biology techniques for improving CO 2 fixation efficiency in many species. One solution might be the utilization of autotrophic bacteria, which have great potential to be engineered into microbial cell factories for CO 2 fixation and the production of chemicals, independent of fossil resources. In this work, several pathways of Ralstonia eutropha H16 were modulated by manipulation of heterologous and endogenous genes related to fatty acid synthesis. The resulting strain B2(pCT, pFP) was able to produce 124.48 mg/g (cell dry weight) free fatty acids with fructose as carbon source, a fourfold increase over the parent strain H16. To develop a truly autotrophic fermentation technique with H 2 , CO 2 and O 2 as substrates, we assembled a relatively safe, continuous, lab-scale gas fermentation system using micro-fermentation tanks, H 2 supplied by a hydrogen generator, and keeping the H 2 to O 2 ratio at 7:1. The system was equipped with a H 2 gas alarm, rid of heat sources and placed into a fume hood to further improve the safety. With this system, the best strain B2(pCT, pFP) produced 60.64 mg free fatty acids per g biomass within 48 h, growing in minimal medium supplemented with 9 × 10 3  mL/L/h hydrogen gas. Thus, an autotrophic fermentation technique to produce fatty acids was successfully established, which might inspire further research on autotrophic gas fermentation with a safe, lab-scale setup, and provides an alternative solution for environmental and energy problems.</description><subject>Autotrophic bacteria</subject><subject>Biochemistry</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide fixation</subject><subject>Carbon sequestration</subject><subject>Carbon sources</subject><subject>Cell Culture and Bioengineering - Original Paper</subject><subject>Climate change research</subject><subject>Factories</subject><subject>Fatty acids</subject><subject>Fermentation</subject><subject>Fructose</subject><subject>Fume cupboards</subject><subject>Genetic Engineering</subject><subject>Heat sources</subject><subject>Industrial engineering</subject><subject>Inorganic Chemistry</subject><subject>Life Sciences</subject><subject>Manufacturing engineering</subject><subject>Metabolic engineering</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Organic chemistry</subject><subject>Ralstonia eutropha</subject><subject>Substrates</subject><subject>Weight</subject><issn>1367-5435</issn><issn>1476-5535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMtOAyEYhYnRaL28gAtD4noUGGCYpanXxMTE6JpQ5qcd00IFxqSv4FNLWy87V5Cc75wDB6FTSi4oIc1looS1oiK0rQijQlZqB40ob2QlRC12y72WTSV4LQ7QYUpvhBDRNGwfHdREUaI4H6HPa_iAeVguwGccHDYemyGHHMNy1lvsIK4Vk_vgcQY78_37ANiFiPMM8DKGbrAbsXidyXmFje27hIfU--k6Dfy09wAROvxs5ikH3xsMw6bAYAvzefHZHOLqGO25QsDJ93mEXm9vXsb31ePT3cP46rGynLJccVtTqF3nuJSudYzZCUwUNZJYJW3byJYrwlswFFoquCUWeEesbSVXDXWT-gidb3PL68tnUtZvYYi-VGpGlZTFxJpCsS1lY0gpgtPL2C9MXGlK9Hp-vZ1fl_n1Zn6tiunsO3qYLKD7tfzsXYB6C6Qi-SnEv-5_Yr8AUIaTZg</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Li, Zhongkang</creator><creator>Xiong, Bin</creator><creator>Liu, Li</creator><creator>Li, Siwei</creator><creator>Xin, Xiuqing</creator><creator>Li, Zhi</creator><creator>Zhang, Xueli</creator><creator>Bi, ChangHao</creator><general>Springer International Publishing</general><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20190601</creationdate><title>Development of an autotrophic fermentation technique for the production of fatty acids using an engineered Ralstonia eutropha cell factory</title><author>Li, Zhongkang ; Xiong, Bin ; Liu, Li ; Li, Siwei ; Xin, Xiuqing ; Li, Zhi ; Zhang, Xueli ; Bi, ChangHao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-4c31e3fdf466f9f22cbeb81a60c86c976948049ea1e9154c0ce4d0cc964871fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Autotrophic bacteria</topic><topic>Biochemistry</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide fixation</topic><topic>Carbon sequestration</topic><topic>Carbon sources</topic><topic>Cell Culture and Bioengineering - Original Paper</topic><topic>Climate change research</topic><topic>Factories</topic><topic>Fatty acids</topic><topic>Fermentation</topic><topic>Fructose</topic><topic>Fume cupboards</topic><topic>Genetic Engineering</topic><topic>Heat sources</topic><topic>Industrial engineering</topic><topic>Inorganic Chemistry</topic><topic>Life Sciences</topic><topic>Manufacturing engineering</topic><topic>Metabolic engineering</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Organic chemistry</topic><topic>Ralstonia eutropha</topic><topic>Substrates</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhongkang</creatorcontrib><creatorcontrib>Xiong, Bin</creatorcontrib><creatorcontrib>Liu, Li</creatorcontrib><creatorcontrib>Li, Siwei</creatorcontrib><creatorcontrib>Xin, Xiuqing</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Zhang, Xueli</creatorcontrib><creatorcontrib>Bi, ChangHao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of industrial microbiology &amp; biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhongkang</au><au>Xiong, Bin</au><au>Liu, Li</au><au>Li, Siwei</au><au>Xin, Xiuqing</au><au>Li, Zhi</au><au>Zhang, Xueli</au><au>Bi, ChangHao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of an autotrophic fermentation technique for the production of fatty acids using an engineered Ralstonia eutropha cell factory</atitle><jtitle>Journal of industrial microbiology &amp; biotechnology</jtitle><stitle>J Ind Microbiol Biotechnol</stitle><addtitle>J Ind Microbiol Biotechnol</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>46</volume><issue>6</issue><spage>783</spage><epage>790</epage><pages>783-790</pages><issn>1367-5435</issn><eissn>1476-5535</eissn><abstract>Massive emission of CO 2 into atmosphere from consumption of carbon deposit is causing climate change. Researchers have applied metabolic engineering and synthetic biology techniques for improving CO 2 fixation efficiency in many species. One solution might be the utilization of autotrophic bacteria, which have great potential to be engineered into microbial cell factories for CO 2 fixation and the production of chemicals, independent of fossil resources. In this work, several pathways of Ralstonia eutropha H16 were modulated by manipulation of heterologous and endogenous genes related to fatty acid synthesis. The resulting strain B2(pCT, pFP) was able to produce 124.48 mg/g (cell dry weight) free fatty acids with fructose as carbon source, a fourfold increase over the parent strain H16. To develop a truly autotrophic fermentation technique with H 2 , CO 2 and O 2 as substrates, we assembled a relatively safe, continuous, lab-scale gas fermentation system using micro-fermentation tanks, H 2 supplied by a hydrogen generator, and keeping the H 2 to O 2 ratio at 7:1. The system was equipped with a H 2 gas alarm, rid of heat sources and placed into a fume hood to further improve the safety. With this system, the best strain B2(pCT, pFP) produced 60.64 mg free fatty acids per g biomass within 48 h, growing in minimal medium supplemented with 9 × 10 3  mL/L/h hydrogen gas. Thus, an autotrophic fermentation technique to produce fatty acids was successfully established, which might inspire further research on autotrophic gas fermentation with a safe, lab-scale setup, and provides an alternative solution for environmental and energy problems.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>30810844</pmid><doi>10.1007/s10295-019-02156-8</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1367-5435
ispartof Journal of industrial microbiology & biotechnology, 2019-06, Vol.46 (6), p.783-790
issn 1367-5435
1476-5535
language eng
recordid cdi_proquest_journals_2186615427
source SpringerLink Journals; Oxford Journals Open Access Collection
subjects Autotrophic bacteria
Biochemistry
Bioinformatics
Biomedical and Life Sciences
Biotechnology
Carbon dioxide
Carbon dioxide fixation
Carbon sequestration
Carbon sources
Cell Culture and Bioengineering - Original Paper
Climate change research
Factories
Fatty acids
Fermentation
Fructose
Fume cupboards
Genetic Engineering
Heat sources
Industrial engineering
Inorganic Chemistry
Life Sciences
Manufacturing engineering
Metabolic engineering
Microbiology
Microorganisms
Organic chemistry
Ralstonia eutropha
Substrates
Weight
title Development of an autotrophic fermentation technique for the production of fatty acids using an engineered Ralstonia eutropha cell factory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A08%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20an%20autotrophic%20fermentation%20technique%20for%20the%20production%20of%20fatty%20acids%20using%20an%20engineered%20Ralstonia%20eutropha%20cell%20factory&rft.jtitle=Journal%20of%20industrial%20microbiology%20&%20biotechnology&rft.au=Li,%20Zhongkang&rft.date=2019-06-01&rft.volume=46&rft.issue=6&rft.spage=783&rft.epage=790&rft.pages=783-790&rft.issn=1367-5435&rft.eissn=1476-5535&rft_id=info:doi/10.1007/s10295-019-02156-8&rft_dat=%3Cproquest_cross%3E2186615427%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186615427&rft_id=info:pmid/30810844&rfr_iscdi=true