CRISPR/Cas9 mutagenesis in Volvox carteri

Summary Volvox carteri and other volvocine green algae comprise an excellent model for investigating developmental complexity and its origins. Here we describe a method for targeted mutagenesis in V. carteri using CRISPR/Cas9 components expressed from transgenes. We used V. carteri nitrate reductase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2019-02, Vol.97 (4), p.661-672
Hauptverfasser: Ortega‐Escalante, José A., Jasper, Robyn, Miller, Stephen M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 672
container_issue 4
container_start_page 661
container_title The Plant journal : for cell and molecular biology
container_volume 97
creator Ortega‐Escalante, José A.
Jasper, Robyn
Miller, Stephen M.
description Summary Volvox carteri and other volvocine green algae comprise an excellent model for investigating developmental complexity and its origins. Here we describe a method for targeted mutagenesis in V. carteri using CRISPR/Cas9 components expressed from transgenes. We used V. carteri nitrate reductase gene (nitA) regulatory sequences to conditionally express Streptococcus pyogenes Cas9, and V. carteri U6 RNA gene regulatory sequences to constitutively express single‐guide RNA (sgRNA) transcripts. Volvox carteri was bombarded with both Cas9 vector and one of several sgRNA vectors programmed to target different test genes (glsA, regA and invA), and transformants were selected for expression of a hygromycin‐resistance marker present on the sgRNA vector. Hygromycin‐resistant transformants grown with nitrate as sole nitrogen source (inducing for nitA) were tested for Cas9 and sgRNA expression, and for the ability to generate progeny with expected mutant phenotypes. Some transformants of a somatic regenerator (Reg) mutant strain receiving sgRNA plasmid with glsA protospacer sequence yielded progeny (at a rate of ~0.01%) with a gonidialess (Gls) phenotype similar to that observed for previously described glsA mutants, and sequencing of the glsA gene in independent mutants revealed short deletions within the targeted region of glsA, indicative of Cas9‐directed non‐homologous end joining. Similarly, bombardment of a morphologically wild‐type strain with the Cas9 plasmid and sgRNA plasmids targeting regA or invA yielded regA and invA mutant transformants/progeny, respectively (at rates of 0.1–100%). The capacity to make precisely directed frameshift mutations should greatly accelerate the molecular genetic analysis of development in V. carteri, and of developmental novelty in the volvocine algae. Significance Statement The multicellular alga Volvox carteri is an attractive model system for investigating developmental mechanisms and their origins. Here we describe a transgene‐based CRISPR/Cas9 method for making targeted mutations in this alga and demonstrate its proficiency by knocking out three previously characterized developmental genes.
doi_str_mv 10.1111/tpj.14149
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2186591828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186591828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3889-2b0091376b4a71cd7e0ac5b8e364a1132ae7e6db566af6cc8c411f9fddb0ef1b3</originalsourceid><addsrcrecordid>eNp1kE9LwzAYh4Mobk4PfgEpeNqhW94mTZOjFP9MBo45xVtI0lQ6tnUmrbpvb7TTm-_lvTw8P3gQOgc8gnDjZrscAQUqDlAfCEtjAuTlEPWxYDjOKCQ9dOL9EmPICKPHqEcwxUykvI-G-XzyOJuPc-VFtG4b9Wo31lc-qjbRc716rz8jo1xjXXWKjkq18vZs_wfo6eZ6kd_F04fbSX41jQ3hXMSJxlgAyZimKgNTZBYrk2puw7ICIImymWWFThlTJTOGGwpQirIoNLYlaDJAl5136-q31vpGLuvWbcKkTICzVABPeKCGHWVc7b2zpdy6aq3cTgKW31FkiCJ_ogT2Ym9s9doWf-RvhQCMO-CjWtnd_ya5mN13yi_o6GnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186591828</pqid></control><display><type>article</type><title>CRISPR/Cas9 mutagenesis in Volvox carteri</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Ortega‐Escalante, José A. ; Jasper, Robyn ; Miller, Stephen M.</creator><creatorcontrib>Ortega‐Escalante, José A. ; Jasper, Robyn ; Miller, Stephen M.</creatorcontrib><description>Summary Volvox carteri and other volvocine green algae comprise an excellent model for investigating developmental complexity and its origins. Here we describe a method for targeted mutagenesis in V. carteri using CRISPR/Cas9 components expressed from transgenes. We used V. carteri nitrate reductase gene (nitA) regulatory sequences to conditionally express Streptococcus pyogenes Cas9, and V. carteri U6 RNA gene regulatory sequences to constitutively express single‐guide RNA (sgRNA) transcripts. Volvox carteri was bombarded with both Cas9 vector and one of several sgRNA vectors programmed to target different test genes (glsA, regA and invA), and transformants were selected for expression of a hygromycin‐resistance marker present on the sgRNA vector. Hygromycin‐resistant transformants grown with nitrate as sole nitrogen source (inducing for nitA) were tested for Cas9 and sgRNA expression, and for the ability to generate progeny with expected mutant phenotypes. Some transformants of a somatic regenerator (Reg) mutant strain receiving sgRNA plasmid with glsA protospacer sequence yielded progeny (at a rate of ~0.01%) with a gonidialess (Gls) phenotype similar to that observed for previously described glsA mutants, and sequencing of the glsA gene in independent mutants revealed short deletions within the targeted region of glsA, indicative of Cas9‐directed non‐homologous end joining. Similarly, bombardment of a morphologically wild‐type strain with the Cas9 plasmid and sgRNA plasmids targeting regA or invA yielded regA and invA mutant transformants/progeny, respectively (at rates of 0.1–100%). The capacity to make precisely directed frameshift mutations should greatly accelerate the molecular genetic analysis of development in V. carteri, and of developmental novelty in the volvocine algae. Significance Statement The multicellular alga Volvox carteri is an attractive model system for investigating developmental mechanisms and their origins. Here we describe a transgene‐based CRISPR/Cas9 method for making targeted mutations in this alga and demonstrate its proficiency by knocking out three previously characterized developmental genes.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.14149</identifier><identifier>PMID: 30406958</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Algae ; Aquatic plants ; Bombardment ; CRISPR ; CRISPR-Cas Systems - genetics ; CRISPR-Cas Systems - physiology ; CRISPR/Cas9 ; developmental genes ; Frameshift mutation ; gene editing ; Gene Editing - methods ; Gene expression ; Gene sequencing ; Genetic analysis ; green algae ; Homology ; Hygromycin ; Mutagenesis ; Mutagenesis - genetics ; Mutagenesis - physiology ; Mutants ; Mutation ; Nitrate reductase ; Offspring ; Phenotypes ; Plasmids ; Progeny ; Regulatory sequences ; Ribonucleic acid ; RNA ; Site-directed mutagenesis ; Transgenes ; Volvox - genetics ; Volvox carteri</subject><ispartof>The Plant journal : for cell and molecular biology, 2019-02, Vol.97 (4), p.661-672</ispartof><rights>2018 The Authors The Plant Journal © 2018 John Wiley &amp; Sons Ltd</rights><rights>2018 The Authors The Plant Journal © 2018 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2019 John Wiley &amp; Sons Ltd and the Society for Experimental Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3889-2b0091376b4a71cd7e0ac5b8e364a1132ae7e6db566af6cc8c411f9fddb0ef1b3</citedby><cites>FETCH-LOGICAL-c3889-2b0091376b4a71cd7e0ac5b8e364a1132ae7e6db566af6cc8c411f9fddb0ef1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.14149$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.14149$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,1435,27933,27934,45583,45584,46418,46842</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30406958$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ortega‐Escalante, José A.</creatorcontrib><creatorcontrib>Jasper, Robyn</creatorcontrib><creatorcontrib>Miller, Stephen M.</creatorcontrib><title>CRISPR/Cas9 mutagenesis in Volvox carteri</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Summary Volvox carteri and other volvocine green algae comprise an excellent model for investigating developmental complexity and its origins. Here we describe a method for targeted mutagenesis in V. carteri using CRISPR/Cas9 components expressed from transgenes. We used V. carteri nitrate reductase gene (nitA) regulatory sequences to conditionally express Streptococcus pyogenes Cas9, and V. carteri U6 RNA gene regulatory sequences to constitutively express single‐guide RNA (sgRNA) transcripts. Volvox carteri was bombarded with both Cas9 vector and one of several sgRNA vectors programmed to target different test genes (glsA, regA and invA), and transformants were selected for expression of a hygromycin‐resistance marker present on the sgRNA vector. Hygromycin‐resistant transformants grown with nitrate as sole nitrogen source (inducing for nitA) were tested for Cas9 and sgRNA expression, and for the ability to generate progeny with expected mutant phenotypes. Some transformants of a somatic regenerator (Reg) mutant strain receiving sgRNA plasmid with glsA protospacer sequence yielded progeny (at a rate of ~0.01%) with a gonidialess (Gls) phenotype similar to that observed for previously described glsA mutants, and sequencing of the glsA gene in independent mutants revealed short deletions within the targeted region of glsA, indicative of Cas9‐directed non‐homologous end joining. Similarly, bombardment of a morphologically wild‐type strain with the Cas9 plasmid and sgRNA plasmids targeting regA or invA yielded regA and invA mutant transformants/progeny, respectively (at rates of 0.1–100%). The capacity to make precisely directed frameshift mutations should greatly accelerate the molecular genetic analysis of development in V. carteri, and of developmental novelty in the volvocine algae. Significance Statement The multicellular alga Volvox carteri is an attractive model system for investigating developmental mechanisms and their origins. Here we describe a transgene‐based CRISPR/Cas9 method for making targeted mutations in this alga and demonstrate its proficiency by knocking out three previously characterized developmental genes.</description><subject>Algae</subject><subject>Aquatic plants</subject><subject>Bombardment</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>CRISPR-Cas Systems - physiology</subject><subject>CRISPR/Cas9</subject><subject>developmental genes</subject><subject>Frameshift mutation</subject><subject>gene editing</subject><subject>Gene Editing - methods</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genetic analysis</subject><subject>green algae</subject><subject>Homology</subject><subject>Hygromycin</subject><subject>Mutagenesis</subject><subject>Mutagenesis - genetics</subject><subject>Mutagenesis - physiology</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Nitrate reductase</subject><subject>Offspring</subject><subject>Phenotypes</subject><subject>Plasmids</subject><subject>Progeny</subject><subject>Regulatory sequences</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Site-directed mutagenesis</subject><subject>Transgenes</subject><subject>Volvox - genetics</subject><subject>Volvox carteri</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE9LwzAYh4Mobk4PfgEpeNqhW94mTZOjFP9MBo45xVtI0lQ6tnUmrbpvb7TTm-_lvTw8P3gQOgc8gnDjZrscAQUqDlAfCEtjAuTlEPWxYDjOKCQ9dOL9EmPICKPHqEcwxUykvI-G-XzyOJuPc-VFtG4b9Wo31lc-qjbRc716rz8jo1xjXXWKjkq18vZs_wfo6eZ6kd_F04fbSX41jQ3hXMSJxlgAyZimKgNTZBYrk2puw7ICIImymWWFThlTJTOGGwpQirIoNLYlaDJAl5136-q31vpGLuvWbcKkTICzVABPeKCGHWVc7b2zpdy6aq3cTgKW31FkiCJ_ogT2Ym9s9doWf-RvhQCMO-CjWtnd_ya5mN13yi_o6GnA</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Ortega‐Escalante, José A.</creator><creator>Jasper, Robyn</creator><creator>Miller, Stephen M.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>201902</creationdate><title>CRISPR/Cas9 mutagenesis in Volvox carteri</title><author>Ortega‐Escalante, José A. ; Jasper, Robyn ; Miller, Stephen M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3889-2b0091376b4a71cd7e0ac5b8e364a1132ae7e6db566af6cc8c411f9fddb0ef1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algae</topic><topic>Aquatic plants</topic><topic>Bombardment</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>CRISPR-Cas Systems - physiology</topic><topic>CRISPR/Cas9</topic><topic>developmental genes</topic><topic>Frameshift mutation</topic><topic>gene editing</topic><topic>Gene Editing - methods</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genetic analysis</topic><topic>green algae</topic><topic>Homology</topic><topic>Hygromycin</topic><topic>Mutagenesis</topic><topic>Mutagenesis - genetics</topic><topic>Mutagenesis - physiology</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Nitrate reductase</topic><topic>Offspring</topic><topic>Phenotypes</topic><topic>Plasmids</topic><topic>Progeny</topic><topic>Regulatory sequences</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Site-directed mutagenesis</topic><topic>Transgenes</topic><topic>Volvox - genetics</topic><topic>Volvox carteri</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ortega‐Escalante, José A.</creatorcontrib><creatorcontrib>Jasper, Robyn</creatorcontrib><creatorcontrib>Miller, Stephen M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ortega‐Escalante, José A.</au><au>Jasper, Robyn</au><au>Miller, Stephen M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CRISPR/Cas9 mutagenesis in Volvox carteri</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2019-02</date><risdate>2019</risdate><volume>97</volume><issue>4</issue><spage>661</spage><epage>672</epage><pages>661-672</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary Volvox carteri and other volvocine green algae comprise an excellent model for investigating developmental complexity and its origins. Here we describe a method for targeted mutagenesis in V. carteri using CRISPR/Cas9 components expressed from transgenes. We used V. carteri nitrate reductase gene (nitA) regulatory sequences to conditionally express Streptococcus pyogenes Cas9, and V. carteri U6 RNA gene regulatory sequences to constitutively express single‐guide RNA (sgRNA) transcripts. Volvox carteri was bombarded with both Cas9 vector and one of several sgRNA vectors programmed to target different test genes (glsA, regA and invA), and transformants were selected for expression of a hygromycin‐resistance marker present on the sgRNA vector. Hygromycin‐resistant transformants grown with nitrate as sole nitrogen source (inducing for nitA) were tested for Cas9 and sgRNA expression, and for the ability to generate progeny with expected mutant phenotypes. Some transformants of a somatic regenerator (Reg) mutant strain receiving sgRNA plasmid with glsA protospacer sequence yielded progeny (at a rate of ~0.01%) with a gonidialess (Gls) phenotype similar to that observed for previously described glsA mutants, and sequencing of the glsA gene in independent mutants revealed short deletions within the targeted region of glsA, indicative of Cas9‐directed non‐homologous end joining. Similarly, bombardment of a morphologically wild‐type strain with the Cas9 plasmid and sgRNA plasmids targeting regA or invA yielded regA and invA mutant transformants/progeny, respectively (at rates of 0.1–100%). The capacity to make precisely directed frameshift mutations should greatly accelerate the molecular genetic analysis of development in V. carteri, and of developmental novelty in the volvocine algae. Significance Statement The multicellular alga Volvox carteri is an attractive model system for investigating developmental mechanisms and their origins. Here we describe a transgene‐based CRISPR/Cas9 method for making targeted mutations in this alga and demonstrate its proficiency by knocking out three previously characterized developmental genes.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>30406958</pmid><doi>10.1111/tpj.14149</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2019-02, Vol.97 (4), p.661-672
issn 0960-7412
1365-313X
language eng
recordid cdi_proquest_journals_2186591828
source MEDLINE; Access via Wiley Online Library; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects Algae
Aquatic plants
Bombardment
CRISPR
CRISPR-Cas Systems - genetics
CRISPR-Cas Systems - physiology
CRISPR/Cas9
developmental genes
Frameshift mutation
gene editing
Gene Editing - methods
Gene expression
Gene sequencing
Genetic analysis
green algae
Homology
Hygromycin
Mutagenesis
Mutagenesis - genetics
Mutagenesis - physiology
Mutants
Mutation
Nitrate reductase
Offspring
Phenotypes
Plasmids
Progeny
Regulatory sequences
Ribonucleic acid
RNA
Site-directed mutagenesis
Transgenes
Volvox - genetics
Volvox carteri
title CRISPR/Cas9 mutagenesis in Volvox carteri
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T13%3A33%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CRISPR/Cas9%20mutagenesis%20in%20Volvox%20carteri&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Ortega%E2%80%90Escalante,%20Jos%C3%A9%20A.&rft.date=2019-02&rft.volume=97&rft.issue=4&rft.spage=661&rft.epage=672&rft.pages=661-672&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.14149&rft_dat=%3Cproquest_cross%3E2186591828%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186591828&rft_id=info:pmid/30406958&rfr_iscdi=true