The process-oriented multivariate capability index
Recent literature has proposed multivariate capability indices, but does not suggest a method for measuring quality characteristics in a way that links production irregularities directly to their causes. Our objective is to present a new approach to multivariate capability indices that uses process-...
Gespeichert in:
Veröffentlicht in: | International journal of production research 2005-05, Vol.43 (10), p.2135-2148 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2148 |
---|---|
container_issue | 10 |
container_start_page | 2135 |
container_title | International journal of production research |
container_volume | 43 |
creator | Foster, E.J. Barton, R.R. Gautam, N. Truss, L.T. Tew, J.D. |
description | Recent literature has proposed multivariate capability indices, but does not suggest a method for measuring quality characteristics in a way that links production irregularities directly to their causes. Our objective is to present a new approach to multivariate capability indices that uses process-oriented basis representation (POBREP) which allows the computing of cause-related index values. The proposed method focuses on independent process-oriented multivariate data by employing regression coefficients as data. These coefficients measure the amount of the characteristic patterns induced by particular problems or incidents that can occur in the system. Two examples from the electronics industry (the chip capacitor process and solder paste process) use simulated data and Monte Carlo integration to demonstrate the new process-oriented capability method. A reduction of estimation error was realized when using process-oriented capability. For the chip capacitor problem, capability error is 24-54% when using ordinary multivariate data. However, when using process-oriented data the error is less than 3%. Capability is difficult to compute from sample data in the solder paste example without the process-oriented approach. Future research should propose a multivariate capability measure for dependent process-oriented data. |
doi_str_mv | 10.1080/00207540412331530158 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_218636428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>828652041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-748b5e896c12ec1315f729a3388317fbd5c576b888ca5cd4cc668e8fcd5bf6913</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKv_wEMR9Laa7531IlL8goKXCt5CNpvFlO1uTbLa_ntTWhGk6Fzm8jwzLy9CpwRfEgz4CmOKc8ExJ5QxIhgmAvbQgDApMwHwuo8GayRLDDtERyHMcBoBfIDo9M2OFr4zNoSs88620Vajed9E96G909GOjF7o0jUurkaurezyGB3Uugn2ZLuH6OX-bjp-zCbPD0_j20lmOJcxyzmUwkIhDaHWkJSrzmmhGQNgJK_LShiRyxIAjBam4sZICRZqU4mylgVhQ3SxuZvivfc2RDV3wdim0a3t-qAoSMqB8ASe_QJnXe_blE1RApJJTiFBfAMZ34Xgba0W3s21XymC1bpFtavFpJ1vb-tgdFN73RoXflwpC1bgNXe94Vxbd36uPzvfVCrqVdP5b2nXAxWXMck3_8rsz5hfBTyW7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218636428</pqid></control><display><type>article</type><title>The process-oriented multivariate capability index</title><source>Business Source Complete</source><source>Taylor & Francis Journals Complete</source><creator>Foster, E.J. ; Barton, R.R. ; Gautam, N. ; Truss, L.T. ; Tew, J.D.</creator><creatorcontrib>Foster, E.J. ; Barton, R.R. ; Gautam, N. ; Truss, L.T. ; Tew, J.D.</creatorcontrib><description>Recent literature has proposed multivariate capability indices, but does not suggest a method for measuring quality characteristics in a way that links production irregularities directly to their causes. Our objective is to present a new approach to multivariate capability indices that uses process-oriented basis representation (POBREP) which allows the computing of cause-related index values. The proposed method focuses on independent process-oriented multivariate data by employing regression coefficients as data. These coefficients measure the amount of the characteristic patterns induced by particular problems or incidents that can occur in the system. Two examples from the electronics industry (the chip capacitor process and solder paste process) use simulated data and Monte Carlo integration to demonstrate the new process-oriented capability method. A reduction of estimation error was realized when using process-oriented capability. For the chip capacitor problem, capability error is 24-54% when using ordinary multivariate data. However, when using process-oriented data the error is less than 3%. Capability is difficult to compute from sample data in the solder paste example without the process-oriented approach. Future research should propose a multivariate capability measure for dependent process-oriented data.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207540412331530158</identifier><identifier>CODEN: IJPRB8</identifier><language>eng</language><publisher>London: Taylor & Francis Group</publisher><subject>Applied sciences ; Capability ; Electronics industry ; Exact sciences and technology ; Indices ; Monte Carlo simulation ; Multivariate ; Multivariate analysis ; Operational research and scientific management ; Operational research. Management science ; Process-oriented ; Quality control ; Reliability theory. Replacement problems ; Studies</subject><ispartof>International journal of production research, 2005-05, Vol.43 (10), p.2135-2148</ispartof><rights>Copyright Taylor & Francis Group, LLC 2005</rights><rights>2005 INIST-CNRS</rights><rights>Copyright Taylor & Francis Group May 15, 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-748b5e896c12ec1315f729a3388317fbd5c576b888ca5cd4cc668e8fcd5bf6913</citedby><cites>FETCH-LOGICAL-c446t-748b5e896c12ec1315f729a3388317fbd5c576b888ca5cd4cc668e8fcd5bf6913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207540412331530158$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207540412331530158$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,59645,60434</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16693908$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Foster, E.J.</creatorcontrib><creatorcontrib>Barton, R.R.</creatorcontrib><creatorcontrib>Gautam, N.</creatorcontrib><creatorcontrib>Truss, L.T.</creatorcontrib><creatorcontrib>Tew, J.D.</creatorcontrib><title>The process-oriented multivariate capability index</title><title>International journal of production research</title><description>Recent literature has proposed multivariate capability indices, but does not suggest a method for measuring quality characteristics in a way that links production irregularities directly to their causes. Our objective is to present a new approach to multivariate capability indices that uses process-oriented basis representation (POBREP) which allows the computing of cause-related index values. The proposed method focuses on independent process-oriented multivariate data by employing regression coefficients as data. These coefficients measure the amount of the characteristic patterns induced by particular problems or incidents that can occur in the system. Two examples from the electronics industry (the chip capacitor process and solder paste process) use simulated data and Monte Carlo integration to demonstrate the new process-oriented capability method. A reduction of estimation error was realized when using process-oriented capability. For the chip capacitor problem, capability error is 24-54% when using ordinary multivariate data. However, when using process-oriented data the error is less than 3%. Capability is difficult to compute from sample data in the solder paste example without the process-oriented approach. Future research should propose a multivariate capability measure for dependent process-oriented data.</description><subject>Applied sciences</subject><subject>Capability</subject><subject>Electronics industry</subject><subject>Exact sciences and technology</subject><subject>Indices</subject><subject>Monte Carlo simulation</subject><subject>Multivariate</subject><subject>Multivariate analysis</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Process-oriented</subject><subject>Quality control</subject><subject>Reliability theory. Replacement problems</subject><subject>Studies</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKv_wEMR9Laa7531IlL8goKXCt5CNpvFlO1uTbLa_ntTWhGk6Fzm8jwzLy9CpwRfEgz4CmOKc8ExJ5QxIhgmAvbQgDApMwHwuo8GayRLDDtERyHMcBoBfIDo9M2OFr4zNoSs88620Vajed9E96G909GOjF7o0jUurkaurezyGB3Uugn2ZLuH6OX-bjp-zCbPD0_j20lmOJcxyzmUwkIhDaHWkJSrzmmhGQNgJK_LShiRyxIAjBam4sZICRZqU4mylgVhQ3SxuZvivfc2RDV3wdim0a3t-qAoSMqB8ASe_QJnXe_blE1RApJJTiFBfAMZ34Xgba0W3s21XymC1bpFtavFpJ1vb-tgdFN73RoXflwpC1bgNXe94Vxbd36uPzvfVCrqVdP5b2nXAxWXMck3_8rsz5hfBTyW7g</recordid><startdate>20050515</startdate><enddate>20050515</enddate><creator>Foster, E.J.</creator><creator>Barton, R.R.</creator><creator>Gautam, N.</creator><creator>Truss, L.T.</creator><creator>Tew, J.D.</creator><general>Taylor & Francis Group</general><general>Taylor & Francis</general><general>Taylor & Francis LLC</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050515</creationdate><title>The process-oriented multivariate capability index</title><author>Foster, E.J. ; Barton, R.R. ; Gautam, N. ; Truss, L.T. ; Tew, J.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-748b5e896c12ec1315f729a3388317fbd5c576b888ca5cd4cc668e8fcd5bf6913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Capability</topic><topic>Electronics industry</topic><topic>Exact sciences and technology</topic><topic>Indices</topic><topic>Monte Carlo simulation</topic><topic>Multivariate</topic><topic>Multivariate analysis</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Process-oriented</topic><topic>Quality control</topic><topic>Reliability theory. Replacement problems</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foster, E.J.</creatorcontrib><creatorcontrib>Barton, R.R.</creatorcontrib><creatorcontrib>Gautam, N.</creatorcontrib><creatorcontrib>Truss, L.T.</creatorcontrib><creatorcontrib>Tew, J.D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foster, E.J.</au><au>Barton, R.R.</au><au>Gautam, N.</au><au>Truss, L.T.</au><au>Tew, J.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The process-oriented multivariate capability index</atitle><jtitle>International journal of production research</jtitle><date>2005-05-15</date><risdate>2005</risdate><volume>43</volume><issue>10</issue><spage>2135</spage><epage>2148</epage><pages>2135-2148</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><coden>IJPRB8</coden><abstract>Recent literature has proposed multivariate capability indices, but does not suggest a method for measuring quality characteristics in a way that links production irregularities directly to their causes. Our objective is to present a new approach to multivariate capability indices that uses process-oriented basis representation (POBREP) which allows the computing of cause-related index values. The proposed method focuses on independent process-oriented multivariate data by employing regression coefficients as data. These coefficients measure the amount of the characteristic patterns induced by particular problems or incidents that can occur in the system. Two examples from the electronics industry (the chip capacitor process and solder paste process) use simulated data and Monte Carlo integration to demonstrate the new process-oriented capability method. A reduction of estimation error was realized when using process-oriented capability. For the chip capacitor problem, capability error is 24-54% when using ordinary multivariate data. However, when using process-oriented data the error is less than 3%. Capability is difficult to compute from sample data in the solder paste example without the process-oriented approach. Future research should propose a multivariate capability measure for dependent process-oriented data.</abstract><cop>London</cop><cop>Washington, DC</cop><pub>Taylor & Francis Group</pub><doi>10.1080/00207540412331530158</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7543 |
ispartof | International journal of production research, 2005-05, Vol.43 (10), p.2135-2148 |
issn | 0020-7543 1366-588X |
language | eng |
recordid | cdi_proquest_journals_218636428 |
source | Business Source Complete; Taylor & Francis Journals Complete |
subjects | Applied sciences Capability Electronics industry Exact sciences and technology Indices Monte Carlo simulation Multivariate Multivariate analysis Operational research and scientific management Operational research. Management science Process-oriented Quality control Reliability theory. Replacement problems Studies |
title | The process-oriented multivariate capability index |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T11%3A48%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20process-oriented%20multivariate%20capability%20index&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Foster,%20E.J.&rft.date=2005-05-15&rft.volume=43&rft.issue=10&rft.spage=2135&rft.epage=2148&rft.pages=2135-2148&rft.issn=0020-7543&rft.eissn=1366-588X&rft.coden=IJPRB8&rft_id=info:doi/10.1080/00207540412331530158&rft_dat=%3Cproquest_pasca%3E828652041%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218636428&rft_id=info:pmid/&rfr_iscdi=true |