The process-oriented multivariate capability index

Recent literature has proposed multivariate capability indices, but does not suggest a method for measuring quality characteristics in a way that links production irregularities directly to their causes. Our objective is to present a new approach to multivariate capability indices that uses process-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of production research 2005-05, Vol.43 (10), p.2135-2148
Hauptverfasser: Foster, E.J., Barton, R.R., Gautam, N., Truss, L.T., Tew, J.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2148
container_issue 10
container_start_page 2135
container_title International journal of production research
container_volume 43
creator Foster, E.J.
Barton, R.R.
Gautam, N.
Truss, L.T.
Tew, J.D.
description Recent literature has proposed multivariate capability indices, but does not suggest a method for measuring quality characteristics in a way that links production irregularities directly to their causes. Our objective is to present a new approach to multivariate capability indices that uses process-oriented basis representation (POBREP) which allows the computing of cause-related index values. The proposed method focuses on independent process-oriented multivariate data by employing regression coefficients as data. These coefficients measure the amount of the characteristic patterns induced by particular problems or incidents that can occur in the system. Two examples from the electronics industry (the chip capacitor process and solder paste process) use simulated data and Monte Carlo integration to demonstrate the new process-oriented capability method. A reduction of estimation error was realized when using process-oriented capability. For the chip capacitor problem, capability error is 24-54% when using ordinary multivariate data. However, when using process-oriented data the error is less than 3%. Capability is difficult to compute from sample data in the solder paste example without the process-oriented approach. Future research should propose a multivariate capability measure for dependent process-oriented data.
doi_str_mv 10.1080/00207540412331530158
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_218636428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>828652041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-748b5e896c12ec1315f729a3388317fbd5c576b888ca5cd4cc668e8fcd5bf6913</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKv_wEMR9Laa7531IlL8goKXCt5CNpvFlO1uTbLa_ntTWhGk6Fzm8jwzLy9CpwRfEgz4CmOKc8ExJ5QxIhgmAvbQgDApMwHwuo8GayRLDDtERyHMcBoBfIDo9M2OFr4zNoSs88620Vajed9E96G909GOjF7o0jUurkaurezyGB3Uugn2ZLuH6OX-bjp-zCbPD0_j20lmOJcxyzmUwkIhDaHWkJSrzmmhGQNgJK_LShiRyxIAjBam4sZICRZqU4mylgVhQ3SxuZvivfc2RDV3wdim0a3t-qAoSMqB8ASe_QJnXe_blE1RApJJTiFBfAMZ34Xgba0W3s21XymC1bpFtavFpJ1vb-tgdFN73RoXflwpC1bgNXe94Vxbd36uPzvfVCrqVdP5b2nXAxWXMck3_8rsz5hfBTyW7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218636428</pqid></control><display><type>article</type><title>The process-oriented multivariate capability index</title><source>Business Source Complete</source><source>Taylor &amp; Francis Journals Complete</source><creator>Foster, E.J. ; Barton, R.R. ; Gautam, N. ; Truss, L.T. ; Tew, J.D.</creator><creatorcontrib>Foster, E.J. ; Barton, R.R. ; Gautam, N. ; Truss, L.T. ; Tew, J.D.</creatorcontrib><description>Recent literature has proposed multivariate capability indices, but does not suggest a method for measuring quality characteristics in a way that links production irregularities directly to their causes. Our objective is to present a new approach to multivariate capability indices that uses process-oriented basis representation (POBREP) which allows the computing of cause-related index values. The proposed method focuses on independent process-oriented multivariate data by employing regression coefficients as data. These coefficients measure the amount of the characteristic patterns induced by particular problems or incidents that can occur in the system. Two examples from the electronics industry (the chip capacitor process and solder paste process) use simulated data and Monte Carlo integration to demonstrate the new process-oriented capability method. A reduction of estimation error was realized when using process-oriented capability. For the chip capacitor problem, capability error is 24-54% when using ordinary multivariate data. However, when using process-oriented data the error is less than 3%. Capability is difficult to compute from sample data in the solder paste example without the process-oriented approach. Future research should propose a multivariate capability measure for dependent process-oriented data.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207540412331530158</identifier><identifier>CODEN: IJPRB8</identifier><language>eng</language><publisher>London: Taylor &amp; Francis Group</publisher><subject>Applied sciences ; Capability ; Electronics industry ; Exact sciences and technology ; Indices ; Monte Carlo simulation ; Multivariate ; Multivariate analysis ; Operational research and scientific management ; Operational research. Management science ; Process-oriented ; Quality control ; Reliability theory. Replacement problems ; Studies</subject><ispartof>International journal of production research, 2005-05, Vol.43 (10), p.2135-2148</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2005</rights><rights>2005 INIST-CNRS</rights><rights>Copyright Taylor &amp; Francis Group May 15, 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-748b5e896c12ec1315f729a3388317fbd5c576b888ca5cd4cc668e8fcd5bf6913</citedby><cites>FETCH-LOGICAL-c446t-748b5e896c12ec1315f729a3388317fbd5c576b888ca5cd4cc668e8fcd5bf6913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207540412331530158$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207540412331530158$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,59645,60434</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16693908$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Foster, E.J.</creatorcontrib><creatorcontrib>Barton, R.R.</creatorcontrib><creatorcontrib>Gautam, N.</creatorcontrib><creatorcontrib>Truss, L.T.</creatorcontrib><creatorcontrib>Tew, J.D.</creatorcontrib><title>The process-oriented multivariate capability index</title><title>International journal of production research</title><description>Recent literature has proposed multivariate capability indices, but does not suggest a method for measuring quality characteristics in a way that links production irregularities directly to their causes. Our objective is to present a new approach to multivariate capability indices that uses process-oriented basis representation (POBREP) which allows the computing of cause-related index values. The proposed method focuses on independent process-oriented multivariate data by employing regression coefficients as data. These coefficients measure the amount of the characteristic patterns induced by particular problems or incidents that can occur in the system. Two examples from the electronics industry (the chip capacitor process and solder paste process) use simulated data and Monte Carlo integration to demonstrate the new process-oriented capability method. A reduction of estimation error was realized when using process-oriented capability. For the chip capacitor problem, capability error is 24-54% when using ordinary multivariate data. However, when using process-oriented data the error is less than 3%. Capability is difficult to compute from sample data in the solder paste example without the process-oriented approach. Future research should propose a multivariate capability measure for dependent process-oriented data.</description><subject>Applied sciences</subject><subject>Capability</subject><subject>Electronics industry</subject><subject>Exact sciences and technology</subject><subject>Indices</subject><subject>Monte Carlo simulation</subject><subject>Multivariate</subject><subject>Multivariate analysis</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Process-oriented</subject><subject>Quality control</subject><subject>Reliability theory. Replacement problems</subject><subject>Studies</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKv_wEMR9Laa7531IlL8goKXCt5CNpvFlO1uTbLa_ntTWhGk6Fzm8jwzLy9CpwRfEgz4CmOKc8ExJ5QxIhgmAvbQgDApMwHwuo8GayRLDDtERyHMcBoBfIDo9M2OFr4zNoSs88620Vajed9E96G909GOjF7o0jUurkaurezyGB3Uugn2ZLuH6OX-bjp-zCbPD0_j20lmOJcxyzmUwkIhDaHWkJSrzmmhGQNgJK_LShiRyxIAjBam4sZICRZqU4mylgVhQ3SxuZvivfc2RDV3wdim0a3t-qAoSMqB8ASe_QJnXe_blE1RApJJTiFBfAMZ34Xgba0W3s21XymC1bpFtavFpJ1vb-tgdFN73RoXflwpC1bgNXe94Vxbd36uPzvfVCrqVdP5b2nXAxWXMck3_8rsz5hfBTyW7g</recordid><startdate>20050515</startdate><enddate>20050515</enddate><creator>Foster, E.J.</creator><creator>Barton, R.R.</creator><creator>Gautam, N.</creator><creator>Truss, L.T.</creator><creator>Tew, J.D.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis LLC</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050515</creationdate><title>The process-oriented multivariate capability index</title><author>Foster, E.J. ; Barton, R.R. ; Gautam, N. ; Truss, L.T. ; Tew, J.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-748b5e896c12ec1315f729a3388317fbd5c576b888ca5cd4cc668e8fcd5bf6913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Capability</topic><topic>Electronics industry</topic><topic>Exact sciences and technology</topic><topic>Indices</topic><topic>Monte Carlo simulation</topic><topic>Multivariate</topic><topic>Multivariate analysis</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Process-oriented</topic><topic>Quality control</topic><topic>Reliability theory. Replacement problems</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Foster, E.J.</creatorcontrib><creatorcontrib>Barton, R.R.</creatorcontrib><creatorcontrib>Gautam, N.</creatorcontrib><creatorcontrib>Truss, L.T.</creatorcontrib><creatorcontrib>Tew, J.D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Foster, E.J.</au><au>Barton, R.R.</au><au>Gautam, N.</au><au>Truss, L.T.</au><au>Tew, J.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The process-oriented multivariate capability index</atitle><jtitle>International journal of production research</jtitle><date>2005-05-15</date><risdate>2005</risdate><volume>43</volume><issue>10</issue><spage>2135</spage><epage>2148</epage><pages>2135-2148</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><coden>IJPRB8</coden><abstract>Recent literature has proposed multivariate capability indices, but does not suggest a method for measuring quality characteristics in a way that links production irregularities directly to their causes. Our objective is to present a new approach to multivariate capability indices that uses process-oriented basis representation (POBREP) which allows the computing of cause-related index values. The proposed method focuses on independent process-oriented multivariate data by employing regression coefficients as data. These coefficients measure the amount of the characteristic patterns induced by particular problems or incidents that can occur in the system. Two examples from the electronics industry (the chip capacitor process and solder paste process) use simulated data and Monte Carlo integration to demonstrate the new process-oriented capability method. A reduction of estimation error was realized when using process-oriented capability. For the chip capacitor problem, capability error is 24-54% when using ordinary multivariate data. However, when using process-oriented data the error is less than 3%. Capability is difficult to compute from sample data in the solder paste example without the process-oriented approach. Future research should propose a multivariate capability measure for dependent process-oriented data.</abstract><cop>London</cop><cop>Washington, DC</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00207540412331530158</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7543
ispartof International journal of production research, 2005-05, Vol.43 (10), p.2135-2148
issn 0020-7543
1366-588X
language eng
recordid cdi_proquest_journals_218636428
source Business Source Complete; Taylor & Francis Journals Complete
subjects Applied sciences
Capability
Electronics industry
Exact sciences and technology
Indices
Monte Carlo simulation
Multivariate
Multivariate analysis
Operational research and scientific management
Operational research. Management science
Process-oriented
Quality control
Reliability theory. Replacement problems
Studies
title The process-oriented multivariate capability index
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T11%3A48%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20process-oriented%20multivariate%20capability%20index&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Foster,%20E.J.&rft.date=2005-05-15&rft.volume=43&rft.issue=10&rft.spage=2135&rft.epage=2148&rft.pages=2135-2148&rft.issn=0020-7543&rft.eissn=1366-588X&rft.coden=IJPRB8&rft_id=info:doi/10.1080/00207540412331530158&rft_dat=%3Cproquest_pasca%3E828652041%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218636428&rft_id=info:pmid/&rfr_iscdi=true