Analytic representation of the order parameter profiles and susceptibility of a Ginzburg-Landau type model with strongly adsorbing competing walls

In this work, we study a critical thermodynamic system (say, a binary liquid mixture) of plane film geometry whose stable states, at given temperature and external ordering field, are determined by the minimizers of the one-dimensional counterpart of the standard ϕ4 Ginzburg-Landau Hamiltonian in te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vassilev, Vassil M., Djondjorov, Peter A., Danchev, Daniel M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2075
creator Vassilev, Vassil M.
Djondjorov, Peter A.
Danchev, Daniel M.
description In this work, we study a critical thermodynamic system (say, a binary liquid mixture) of plane film geometry whose stable states, at given temperature and external ordering field, are determined by the minimizers of the one-dimensional counterpart of the standard ϕ4 Ginzburg-Landau Hamiltonian in terms of the order parameter. We focus on the case in which both bounding walls are strongly adsorbing but competing, e.g., prefer different components of the mixture, that is the order parameter tends to infinity at one of the boundaries and to minus infinity at the other one. Assuming that the boundaries of the system are positioned at a finite distance from one another, we solve the corresponding (+, −) boundary-value problem in terms of Weierstrass and Jacobi elliptic functions and give analytic representation of the order parameter profiles and local and total susceptibilities depending on the temperature and ordering field.
doi_str_mv 10.1063/1.5091140
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2186346559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186346559</sourcerecordid><originalsourceid>FETCH-LOGICAL-p218t-6d38ea5ffb94e8ecfe8e0afc1d599eae1fd7aafea36ddf42d9a8e35ec46d883b3</originalsourceid><addsrcrecordid>eNotkM9KxDAQh4MouK4efIOAN6Fr0vRfjsuiq7DgRcFbmTaT3SxtU5OUpT6GT2zLepn5Hb6ZYT5C7jlbcZaJJ75KmeQ8YRdkwdOUR3nGs0uyYEwmUZyIr2ty4_2RsVjmebEgv-sOmjGYmjrsHXrsAgRjO2o1DQek1il0tAcHLYY5OatNg55Cp6gffI19MJVpTBjnEaBb0_1Ug9tHu4mAgYaxR9pahQ09mXCgPjjb7ZuRgvLWVabb09q2PYY5naBp_C250tB4vPvvS_L58vyxeY1279u3zXoX9TEvQpQpUSCkWlcywQJrPRUGuuYqlRIBuVY5gEYQmVI6iZWEAkWKdZKpohCVWJKH897pp-8BfSiPdnCTDl9OBzKRZGkqJ-rxTPnanNWUvTMtuLHkrJydl7z8dy7-AHdfeXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2186346559</pqid></control><display><type>conference_proceeding</type><title>Analytic representation of the order parameter profiles and susceptibility of a Ginzburg-Landau type model with strongly adsorbing competing walls</title><source>AIP Journals Complete</source><creator>Vassilev, Vassil M. ; Djondjorov, Peter A. ; Danchev, Daniel M.</creator><contributor>Varonov, Albert M. ; Mishonov, Todor M.</contributor><creatorcontrib>Vassilev, Vassil M. ; Djondjorov, Peter A. ; Danchev, Daniel M. ; Varonov, Albert M. ; Mishonov, Todor M.</creatorcontrib><description>In this work, we study a critical thermodynamic system (say, a binary liquid mixture) of plane film geometry whose stable states, at given temperature and external ordering field, are determined by the minimizers of the one-dimensional counterpart of the standard ϕ4 Ginzburg-Landau Hamiltonian in terms of the order parameter. We focus on the case in which both bounding walls are strongly adsorbing but competing, e.g., prefer different components of the mixture, that is the order parameter tends to infinity at one of the boundaries and to minus infinity at the other one. Assuming that the boundaries of the system are positioned at a finite distance from one another, we solve the corresponding (+, −) boundary-value problem in terms of Weierstrass and Jacobi elliptic functions and give analytic representation of the order parameter profiles and local and total susceptibilities depending on the temperature and ordering field.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5091140</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Boundary value problems ; Elliptic functions ; Infinity ; Order parameters ; Representations</subject><ispartof>AIP conference proceedings, 2019, Vol.2075 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5091140$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4511,23929,23930,25139,27923,27924,76155</link.rule.ids></links><search><contributor>Varonov, Albert M.</contributor><contributor>Mishonov, Todor M.</contributor><creatorcontrib>Vassilev, Vassil M.</creatorcontrib><creatorcontrib>Djondjorov, Peter A.</creatorcontrib><creatorcontrib>Danchev, Daniel M.</creatorcontrib><title>Analytic representation of the order parameter profiles and susceptibility of a Ginzburg-Landau type model with strongly adsorbing competing walls</title><title>AIP conference proceedings</title><description>In this work, we study a critical thermodynamic system (say, a binary liquid mixture) of plane film geometry whose stable states, at given temperature and external ordering field, are determined by the minimizers of the one-dimensional counterpart of the standard ϕ4 Ginzburg-Landau Hamiltonian in terms of the order parameter. We focus on the case in which both bounding walls are strongly adsorbing but competing, e.g., prefer different components of the mixture, that is the order parameter tends to infinity at one of the boundaries and to minus infinity at the other one. Assuming that the boundaries of the system are positioned at a finite distance from one another, we solve the corresponding (+, −) boundary-value problem in terms of Weierstrass and Jacobi elliptic functions and give analytic representation of the order parameter profiles and local and total susceptibilities depending on the temperature and ordering field.</description><subject>Boundary value problems</subject><subject>Elliptic functions</subject><subject>Infinity</subject><subject>Order parameters</subject><subject>Representations</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkM9KxDAQh4MouK4efIOAN6Fr0vRfjsuiq7DgRcFbmTaT3SxtU5OUpT6GT2zLepn5Hb6ZYT5C7jlbcZaJJ75KmeQ8YRdkwdOUR3nGs0uyYEwmUZyIr2ty4_2RsVjmebEgv-sOmjGYmjrsHXrsAgRjO2o1DQek1il0tAcHLYY5OatNg55Cp6gffI19MJVpTBjnEaBb0_1Ug9tHu4mAgYaxR9pahQ09mXCgPjjb7ZuRgvLWVabb09q2PYY5naBp_C250tB4vPvvS_L58vyxeY1279u3zXoX9TEvQpQpUSCkWlcywQJrPRUGuuYqlRIBuVY5gEYQmVI6iZWEAkWKdZKpohCVWJKH897pp-8BfSiPdnCTDl9OBzKRZGkqJ-rxTPnanNWUvTMtuLHkrJydl7z8dy7-AHdfeXw</recordid><startdate>20190226</startdate><enddate>20190226</enddate><creator>Vassilev, Vassil M.</creator><creator>Djondjorov, Peter A.</creator><creator>Danchev, Daniel M.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190226</creationdate><title>Analytic representation of the order parameter profiles and susceptibility of a Ginzburg-Landau type model with strongly adsorbing competing walls</title><author>Vassilev, Vassil M. ; Djondjorov, Peter A. ; Danchev, Daniel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p218t-6d38ea5ffb94e8ecfe8e0afc1d599eae1fd7aafea36ddf42d9a8e35ec46d883b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary value problems</topic><topic>Elliptic functions</topic><topic>Infinity</topic><topic>Order parameters</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vassilev, Vassil M.</creatorcontrib><creatorcontrib>Djondjorov, Peter A.</creatorcontrib><creatorcontrib>Danchev, Daniel M.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vassilev, Vassil M.</au><au>Djondjorov, Peter A.</au><au>Danchev, Daniel M.</au><au>Varonov, Albert M.</au><au>Mishonov, Todor M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Analytic representation of the order parameter profiles and susceptibility of a Ginzburg-Landau type model with strongly adsorbing competing walls</atitle><btitle>AIP conference proceedings</btitle><date>2019-02-26</date><risdate>2019</risdate><volume>2075</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this work, we study a critical thermodynamic system (say, a binary liquid mixture) of plane film geometry whose stable states, at given temperature and external ordering field, are determined by the minimizers of the one-dimensional counterpart of the standard ϕ4 Ginzburg-Landau Hamiltonian in terms of the order parameter. We focus on the case in which both bounding walls are strongly adsorbing but competing, e.g., prefer different components of the mixture, that is the order parameter tends to infinity at one of the boundaries and to minus infinity at the other one. Assuming that the boundaries of the system are positioned at a finite distance from one another, we solve the corresponding (+, −) boundary-value problem in terms of Weierstrass and Jacobi elliptic functions and give analytic representation of the order parameter profiles and local and total susceptibilities depending on the temperature and ordering field.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5091140</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2019, Vol.2075 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2186346559
source AIP Journals Complete
subjects Boundary value problems
Elliptic functions
Infinity
Order parameters
Representations
title Analytic representation of the order parameter profiles and susceptibility of a Ginzburg-Landau type model with strongly adsorbing competing walls
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A29%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Analytic%20representation%20of%20the%20order%20parameter%20profiles%20and%20susceptibility%20of%20a%20Ginzburg-Landau%20type%20model%20with%20strongly%20adsorbing%20competing%20walls&rft.btitle=AIP%20conference%20proceedings&rft.au=Vassilev,%20Vassil%20M.&rft.date=2019-02-26&rft.volume=2075&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5091140&rft_dat=%3Cproquest_scita%3E2186346559%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186346559&rft_id=info:pmid/&rfr_iscdi=true