Nonlinear mathematical models for physical phenomena

The paper focuses on methods which allow to directly finding traveling wave solutions for a specific class of partial differential equations. The key idea is the reduction of the initial equation to an ordinary differential equation by passing to the wave variable. An improvement to the classical ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Constantinescu, Radu, Iacobescu, Fanel, Pauna, Alina
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2075
creator Constantinescu, Radu
Iacobescu, Fanel
Pauna, Alina
description The paper focuses on methods which allow to directly finding traveling wave solutions for a specific class of partial differential equations. The key idea is the reduction of the initial equation to an ordinary differential equation by passing to the wave variable. An improvement to the classical approach, consisting in a supplementary reduction by attaching a flux type equation, is proposed. How this improved approach is working is illustrated on few nonlinear models describing physical phenomena.
doi_str_mv 10.1063/1.5091249
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2186341122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186341122</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-c67118e067615727bbcc86ffd8a5b8ef72d3814b197f360f70db4dd4a9f9467a3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMoWFcPfoOCN6FrJknz5yiLrsKiFwVvIW0S2qVtatIV9ttb3QVvXt7A4zczj4fQNeAlYE7vYFliBYSpE5RBWUIhOPBTlGGsWEEY_ThHFyltMSZKCJkh9hKGrh2ciXlvpsbN0tamy_tgXZdyH2I-Nvv0642NG0LvBnOJzrzpkrs6zgV6f3x4Wz0Vm9f18-p-U4ykpFNRcwEgHeZzhlIQUVV1Lbn3Vpqyks4LYqkEVoESnnLsBbYVs5YZ5RXjwtAFujncHWP43Lk06W3YxWF-qQlIThkAITN1e6BS3U5z_DDoMba9iXv9FaIGfWxEj9b_BwPWPxX-LdBvesZiJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2186341122</pqid></control><display><type>conference_proceeding</type><title>Nonlinear mathematical models for physical phenomena</title><source>AIP Journals Complete</source><creator>Constantinescu, Radu ; Iacobescu, Fanel ; Pauna, Alina</creator><contributor>Varonov, Albert M. ; Mishonov, Todor M.</contributor><creatorcontrib>Constantinescu, Radu ; Iacobescu, Fanel ; Pauna, Alina ; Varonov, Albert M. ; Mishonov, Todor M.</creatorcontrib><description>The paper focuses on methods which allow to directly finding traveling wave solutions for a specific class of partial differential equations. The key idea is the reduction of the initial equation to an ordinary differential equation by passing to the wave variable. An improvement to the classical approach, consisting in a supplementary reduction by attaching a flux type equation, is proposed. How this improved approach is working is illustrated on few nonlinear models describing physical phenomena.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5091249</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Mathematical models ; Ordinary differential equations ; Partial differential equations ; Reduction ; Traveling waves</subject><ispartof>AIP conference proceedings, 2019, Vol.2075 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5091249$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Varonov, Albert M.</contributor><contributor>Mishonov, Todor M.</contributor><creatorcontrib>Constantinescu, Radu</creatorcontrib><creatorcontrib>Iacobescu, Fanel</creatorcontrib><creatorcontrib>Pauna, Alina</creatorcontrib><title>Nonlinear mathematical models for physical phenomena</title><title>AIP conference proceedings</title><description>The paper focuses on methods which allow to directly finding traveling wave solutions for a specific class of partial differential equations. The key idea is the reduction of the initial equation to an ordinary differential equation by passing to the wave variable. An improvement to the classical approach, consisting in a supplementary reduction by attaching a flux type equation, is proposed. How this improved approach is working is illustrated on few nonlinear models describing physical phenomena.</description><subject>Mathematical models</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Reduction</subject><subject>Traveling waves</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE9LxDAQxYMoWFcPfoOCN6FrJknz5yiLrsKiFwVvIW0S2qVtatIV9ttb3QVvXt7A4zczj4fQNeAlYE7vYFliBYSpE5RBWUIhOPBTlGGsWEEY_ThHFyltMSZKCJkh9hKGrh2ciXlvpsbN0tamy_tgXZdyH2I-Nvv0642NG0LvBnOJzrzpkrs6zgV6f3x4Wz0Vm9f18-p-U4ykpFNRcwEgHeZzhlIQUVV1Lbn3Vpqyks4LYqkEVoESnnLsBbYVs5YZ5RXjwtAFujncHWP43Lk06W3YxWF-qQlIThkAITN1e6BS3U5z_DDoMba9iXv9FaIGfWxEj9b_BwPWPxX-LdBvesZiJw</recordid><startdate>20190226</startdate><enddate>20190226</enddate><creator>Constantinescu, Radu</creator><creator>Iacobescu, Fanel</creator><creator>Pauna, Alina</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190226</creationdate><title>Nonlinear mathematical models for physical phenomena</title><author>Constantinescu, Radu ; Iacobescu, Fanel ; Pauna, Alina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-c67118e067615727bbcc86ffd8a5b8ef72d3814b197f360f70db4dd4a9f9467a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Mathematical models</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Reduction</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Constantinescu, Radu</creatorcontrib><creatorcontrib>Iacobescu, Fanel</creatorcontrib><creatorcontrib>Pauna, Alina</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Constantinescu, Radu</au><au>Iacobescu, Fanel</au><au>Pauna, Alina</au><au>Varonov, Albert M.</au><au>Mishonov, Todor M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nonlinear mathematical models for physical phenomena</atitle><btitle>AIP conference proceedings</btitle><date>2019-02-26</date><risdate>2019</risdate><volume>2075</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The paper focuses on methods which allow to directly finding traveling wave solutions for a specific class of partial differential equations. The key idea is the reduction of the initial equation to an ordinary differential equation by passing to the wave variable. An improvement to the classical approach, consisting in a supplementary reduction by attaching a flux type equation, is proposed. How this improved approach is working is illustrated on few nonlinear models describing physical phenomena.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5091249</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2019, Vol.2075 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2186341122
source AIP Journals Complete
subjects Mathematical models
Ordinary differential equations
Partial differential equations
Reduction
Traveling waves
title Nonlinear mathematical models for physical phenomena
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A10%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nonlinear%20mathematical%20models%20for%20physical%20phenomena&rft.btitle=AIP%20conference%20proceedings&rft.au=Constantinescu,%20Radu&rft.date=2019-02-26&rft.volume=2075&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5091249&rft_dat=%3Cproquest_scita%3E2186341122%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186341122&rft_id=info:pmid/&rfr_iscdi=true