Nonlinear mathematical models for physical phenomena
The paper focuses on methods which allow to directly finding traveling wave solutions for a specific class of partial differential equations. The key idea is the reduction of the initial equation to an ordinary differential equation by passing to the wave variable. An improvement to the classical ap...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2075 |
creator | Constantinescu, Radu Iacobescu, Fanel Pauna, Alina |
description | The paper focuses on methods which allow to directly finding traveling wave solutions for a specific class of partial differential equations. The key idea is the reduction of the initial equation to an ordinary differential equation by passing to the wave variable. An improvement to the classical approach, consisting in a supplementary reduction by attaching a flux type equation, is proposed. How this improved approach is working is illustrated on few nonlinear models describing physical phenomena. |
doi_str_mv | 10.1063/1.5091249 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2186341122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186341122</sourcerecordid><originalsourceid>FETCH-LOGICAL-p253t-c67118e067615727bbcc86ffd8a5b8ef72d3814b197f360f70db4dd4a9f9467a3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMoWFcPfoOCN6FrJknz5yiLrsKiFwVvIW0S2qVtatIV9ttb3QVvXt7A4zczj4fQNeAlYE7vYFliBYSpE5RBWUIhOPBTlGGsWEEY_ThHFyltMSZKCJkh9hKGrh2ciXlvpsbN0tamy_tgXZdyH2I-Nvv0642NG0LvBnOJzrzpkrs6zgV6f3x4Wz0Vm9f18-p-U4ykpFNRcwEgHeZzhlIQUVV1Lbn3Vpqyks4LYqkEVoESnnLsBbYVs5YZ5RXjwtAFujncHWP43Lk06W3YxWF-qQlIThkAITN1e6BS3U5z_DDoMba9iXv9FaIGfWxEj9b_BwPWPxX-LdBvesZiJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2186341122</pqid></control><display><type>conference_proceeding</type><title>Nonlinear mathematical models for physical phenomena</title><source>AIP Journals Complete</source><creator>Constantinescu, Radu ; Iacobescu, Fanel ; Pauna, Alina</creator><contributor>Varonov, Albert M. ; Mishonov, Todor M.</contributor><creatorcontrib>Constantinescu, Radu ; Iacobescu, Fanel ; Pauna, Alina ; Varonov, Albert M. ; Mishonov, Todor M.</creatorcontrib><description>The paper focuses on methods which allow to directly finding traveling wave solutions for a specific class of partial differential equations. The key idea is the reduction of the initial equation to an ordinary differential equation by passing to the wave variable. An improvement to the classical approach, consisting in a supplementary reduction by attaching a flux type equation, is proposed. How this improved approach is working is illustrated on few nonlinear models describing physical phenomena.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/1.5091249</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Mathematical models ; Ordinary differential equations ; Partial differential equations ; Reduction ; Traveling waves</subject><ispartof>AIP conference proceedings, 2019, Vol.2075 (1)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/1.5091249$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4512,23930,23931,25140,27924,27925,76384</link.rule.ids></links><search><contributor>Varonov, Albert M.</contributor><contributor>Mishonov, Todor M.</contributor><creatorcontrib>Constantinescu, Radu</creatorcontrib><creatorcontrib>Iacobescu, Fanel</creatorcontrib><creatorcontrib>Pauna, Alina</creatorcontrib><title>Nonlinear mathematical models for physical phenomena</title><title>AIP conference proceedings</title><description>The paper focuses on methods which allow to directly finding traveling wave solutions for a specific class of partial differential equations. The key idea is the reduction of the initial equation to an ordinary differential equation by passing to the wave variable. An improvement to the classical approach, consisting in a supplementary reduction by attaching a flux type equation, is proposed. How this improved approach is working is illustrated on few nonlinear models describing physical phenomena.</description><subject>Mathematical models</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Reduction</subject><subject>Traveling waves</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2019</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNp9kE9LxDAQxYMoWFcPfoOCN6FrJknz5yiLrsKiFwVvIW0S2qVtatIV9ttb3QVvXt7A4zczj4fQNeAlYE7vYFliBYSpE5RBWUIhOPBTlGGsWEEY_ThHFyltMSZKCJkh9hKGrh2ciXlvpsbN0tamy_tgXZdyH2I-Nvv0642NG0LvBnOJzrzpkrs6zgV6f3x4Wz0Vm9f18-p-U4ykpFNRcwEgHeZzhlIQUVV1Lbn3Vpqyks4LYqkEVoESnnLsBbYVs5YZ5RXjwtAFujncHWP43Lk06W3YxWF-qQlIThkAITN1e6BS3U5z_DDoMba9iXv9FaIGfWxEj9b_BwPWPxX-LdBvesZiJw</recordid><startdate>20190226</startdate><enddate>20190226</enddate><creator>Constantinescu, Radu</creator><creator>Iacobescu, Fanel</creator><creator>Pauna, Alina</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20190226</creationdate><title>Nonlinear mathematical models for physical phenomena</title><author>Constantinescu, Radu ; Iacobescu, Fanel ; Pauna, Alina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p253t-c67118e067615727bbcc86ffd8a5b8ef72d3814b197f360f70db4dd4a9f9467a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Mathematical models</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Reduction</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Constantinescu, Radu</creatorcontrib><creatorcontrib>Iacobescu, Fanel</creatorcontrib><creatorcontrib>Pauna, Alina</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Constantinescu, Radu</au><au>Iacobescu, Fanel</au><au>Pauna, Alina</au><au>Varonov, Albert M.</au><au>Mishonov, Todor M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nonlinear mathematical models for physical phenomena</atitle><btitle>AIP conference proceedings</btitle><date>2019-02-26</date><risdate>2019</risdate><volume>2075</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The paper focuses on methods which allow to directly finding traveling wave solutions for a specific class of partial differential equations. The key idea is the reduction of the initial equation to an ordinary differential equation by passing to the wave variable. An improvement to the classical approach, consisting in a supplementary reduction by attaching a flux type equation, is proposed. How this improved approach is working is illustrated on few nonlinear models describing physical phenomena.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5091249</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2019, Vol.2075 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2186341122 |
source | AIP Journals Complete |
subjects | Mathematical models Ordinary differential equations Partial differential equations Reduction Traveling waves |
title | Nonlinear mathematical models for physical phenomena |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A10%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nonlinear%20mathematical%20models%20for%20physical%20phenomena&rft.btitle=AIP%20conference%20proceedings&rft.au=Constantinescu,%20Radu&rft.date=2019-02-26&rft.volume=2075&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/1.5091249&rft_dat=%3Cproquest_scita%3E2186341122%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186341122&rft_id=info:pmid/&rfr_iscdi=true |