Fast Efficient Hyperparameter Tuning for Policy Gradients
The performance of policy gradient methods is sensitive to hyperparameter settings that must be tuned for any new application. Widely used grid search methods for tuning hyperparameters are sample inefficient and computationally expensive. More advanced methods like Population Based Training that le...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-09 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Supratik, Paul Kurin, Vitaly Whiteson, Shimon |
description | The performance of policy gradient methods is sensitive to hyperparameter settings that must be tuned for any new application. Widely used grid search methods for tuning hyperparameters are sample inefficient and computationally expensive. More advanced methods like Population Based Training that learn optimal schedules for hyperparameters instead of fixed settings can yield better results, but are also sample inefficient and computationally expensive. In this paper, we propose Hyperparameter Optimisation on the Fly (HOOF), a gradient-free algorithm that requires no more than one training run to automatically adapt the hyperparameter that affect the policy update directly through the gradient. The main idea is to use existing trajectories sampled by the policy gradient method to optimise a one-step improvement objective, yielding a sample and computationally efficient algorithm that is easy to implement. Our experimental results across multiple domains and algorithms show that using HOOF to learn these hyperparameter schedules leads to faster learning with improved performance. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2186334041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186334041</sourcerecordid><originalsourceid>FETCH-proquest_journals_21863340413</originalsourceid><addsrcrecordid>eNqNyrEKwjAUQNEgCBbtPwScC2leWussrR0dupdQE0mpSXxJhv69Cn6A0x3u2ZCMA5RFIzjfkTyEmTHG6xOvKsjIuZMh0lZrMxllI-1Xr9BLlE8VFdIhWWMfVDukN7eYaaVXlPevDAey1XIJKv91T45dO1z6wqN7JRXiOLuE9rNGXjY1gGCihP_UG4Q4Nm8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186334041</pqid></control><display><type>article</type><title>Fast Efficient Hyperparameter Tuning for Policy Gradients</title><source>Free E- Journals</source><creator>Supratik, Paul ; Kurin, Vitaly ; Whiteson, Shimon</creator><creatorcontrib>Supratik, Paul ; Kurin, Vitaly ; Whiteson, Shimon</creatorcontrib><description>The performance of policy gradient methods is sensitive to hyperparameter settings that must be tuned for any new application. Widely used grid search methods for tuning hyperparameters are sample inefficient and computationally expensive. More advanced methods like Population Based Training that learn optimal schedules for hyperparameters instead of fixed settings can yield better results, but are also sample inefficient and computationally expensive. In this paper, we propose Hyperparameter Optimisation on the Fly (HOOF), a gradient-free algorithm that requires no more than one training run to automatically adapt the hyperparameter that affect the policy update directly through the gradient. The main idea is to use existing trajectories sampled by the policy gradient method to optimise a one-step improvement objective, yielding a sample and computationally efficient algorithm that is easy to implement. Our experimental results across multiple domains and algorithms show that using HOOF to learn these hyperparameter schedules leads to faster learning with improved performance.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Domains ; Machine learning ; Optimization ; Schedules ; Tuning</subject><ispartof>arXiv.org, 2019-09</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Supratik, Paul</creatorcontrib><creatorcontrib>Kurin, Vitaly</creatorcontrib><creatorcontrib>Whiteson, Shimon</creatorcontrib><title>Fast Efficient Hyperparameter Tuning for Policy Gradients</title><title>arXiv.org</title><description>The performance of policy gradient methods is sensitive to hyperparameter settings that must be tuned for any new application. Widely used grid search methods for tuning hyperparameters are sample inefficient and computationally expensive. More advanced methods like Population Based Training that learn optimal schedules for hyperparameters instead of fixed settings can yield better results, but are also sample inefficient and computationally expensive. In this paper, we propose Hyperparameter Optimisation on the Fly (HOOF), a gradient-free algorithm that requires no more than one training run to automatically adapt the hyperparameter that affect the policy update directly through the gradient. The main idea is to use existing trajectories sampled by the policy gradient method to optimise a one-step improvement objective, yielding a sample and computationally efficient algorithm that is easy to implement. Our experimental results across multiple domains and algorithms show that using HOOF to learn these hyperparameter schedules leads to faster learning with improved performance.</description><subject>Algorithms</subject><subject>Domains</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Schedules</subject><subject>Tuning</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrEKwjAUQNEgCBbtPwScC2leWussrR0dupdQE0mpSXxJhv69Cn6A0x3u2ZCMA5RFIzjfkTyEmTHG6xOvKsjIuZMh0lZrMxllI-1Xr9BLlE8VFdIhWWMfVDukN7eYaaVXlPevDAey1XIJKv91T45dO1z6wqN7JRXiOLuE9rNGXjY1gGCihP_UG4Q4Nm8</recordid><startdate>20190917</startdate><enddate>20190917</enddate><creator>Supratik, Paul</creator><creator>Kurin, Vitaly</creator><creator>Whiteson, Shimon</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190917</creationdate><title>Fast Efficient Hyperparameter Tuning for Policy Gradients</title><author>Supratik, Paul ; Kurin, Vitaly ; Whiteson, Shimon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21863340413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Domains</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Schedules</topic><topic>Tuning</topic><toplevel>online_resources</toplevel><creatorcontrib>Supratik, Paul</creatorcontrib><creatorcontrib>Kurin, Vitaly</creatorcontrib><creatorcontrib>Whiteson, Shimon</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Supratik, Paul</au><au>Kurin, Vitaly</au><au>Whiteson, Shimon</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Fast Efficient Hyperparameter Tuning for Policy Gradients</atitle><jtitle>arXiv.org</jtitle><date>2019-09-17</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>The performance of policy gradient methods is sensitive to hyperparameter settings that must be tuned for any new application. Widely used grid search methods for tuning hyperparameters are sample inefficient and computationally expensive. More advanced methods like Population Based Training that learn optimal schedules for hyperparameters instead of fixed settings can yield better results, but are also sample inefficient and computationally expensive. In this paper, we propose Hyperparameter Optimisation on the Fly (HOOF), a gradient-free algorithm that requires no more than one training run to automatically adapt the hyperparameter that affect the policy update directly through the gradient. The main idea is to use existing trajectories sampled by the policy gradient method to optimise a one-step improvement objective, yielding a sample and computationally efficient algorithm that is easy to implement. Our experimental results across multiple domains and algorithms show that using HOOF to learn these hyperparameter schedules leads to faster learning with improved performance.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2186334041 |
source | Free E- Journals |
subjects | Algorithms Domains Machine learning Optimization Schedules Tuning |
title | Fast Efficient Hyperparameter Tuning for Policy Gradients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A25%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Fast%20Efficient%20Hyperparameter%20Tuning%20for%20Policy%20Gradients&rft.jtitle=arXiv.org&rft.au=Supratik,%20Paul&rft.date=2019-09-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2186334041%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186334041&rft_id=info:pmid/&rfr_iscdi=true |