({\boldsymbol\pi}\)-systems of symmetrizable Kac-Moody algebras
As part of his classification of regular semisimple subalgebras of semisimple Lie algebras, Dynkin introduced the notion of a \(\pi\)-system. This is a subset of the roots such that pairwise differences of its elements are not roots. These arise as simple systems of regular semisimple subalgebras. M...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-02 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Carbone, Lisa Raghavan, K N Ransingh, Biswajit Roy, Krishanu Viswanath, Sankaran |
description | As part of his classification of regular semisimple subalgebras of semisimple Lie algebras, Dynkin introduced the notion of a \(\pi\)-system. This is a subset of the roots such that pairwise differences of its elements are not roots. These arise as simple systems of regular semisimple subalgebras. Morita and Naito generalized this notion to all symmetrizable Kac-Moody algebras. In this work, we systematically develop the theory of \(\pi\)-systems of symmetrizable Kac-Moody algebras and establish their fundamental properties. We study the orbits of the Weyl group on \(\pi\)-systems, and completely determine the number of orbits in many cases of interest in physics. In particular, we show that there is a unique \(\pi\)-system of type \(HA_1^{(1)}\) (the Feingold-Frenkel algebra) in \(E_{10}\) (the rank 10 hyperbolic algebra) up to Weyl group action and negation. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2186333101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186333101</sourcerecordid><originalsourceid>FETCH-proquest_journals_21863331013</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw16iOScrPSSmuzAVSMQWZtTGausWVxSWpucUK-WkKQPHc1JKizKrEpJxUBe_EZF3f_PyUSoXEnPTUpKLEYh4G1rTEnOJUXijNzaDs5hri7KFbUJRfWJpaXBKflV9alAeUijcytDAzBrrEwNCYOFUAO9g5EA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186333101</pqid></control><display><type>article</type><title>({\boldsymbol\pi}\)-systems of symmetrizable Kac-Moody algebras</title><source>Free E- Journals</source><creator>Carbone, Lisa ; Raghavan, K N ; Ransingh, Biswajit ; Roy, Krishanu ; Viswanath, Sankaran</creator><creatorcontrib>Carbone, Lisa ; Raghavan, K N ; Ransingh, Biswajit ; Roy, Krishanu ; Viswanath, Sankaran</creatorcontrib><description>As part of his classification of regular semisimple subalgebras of semisimple Lie algebras, Dynkin introduced the notion of a \(\pi\)-system. This is a subset of the roots such that pairwise differences of its elements are not roots. These arise as simple systems of regular semisimple subalgebras. Morita and Naito generalized this notion to all symmetrizable Kac-Moody algebras. In this work, we systematically develop the theory of \(\pi\)-systems of symmetrizable Kac-Moody algebras and establish their fundamental properties. We study the orbits of the Weyl group on \(\pi\)-systems, and completely determine the number of orbits in many cases of interest in physics. In particular, we show that there is a unique \(\pi\)-system of type \(HA_1^{(1)}\) (the Feingold-Frenkel algebra) in \(E_{10}\) (the rank 10 hyperbolic algebra) up to Weyl group action and negation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Group theory ; Lie groups ; Orbits ; Roots ; Set theory</subject><ispartof>arXiv.org, 2020-02</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Carbone, Lisa</creatorcontrib><creatorcontrib>Raghavan, K N</creatorcontrib><creatorcontrib>Ransingh, Biswajit</creatorcontrib><creatorcontrib>Roy, Krishanu</creatorcontrib><creatorcontrib>Viswanath, Sankaran</creatorcontrib><title>({\boldsymbol\pi}\)-systems of symmetrizable Kac-Moody algebras</title><title>arXiv.org</title><description>As part of his classification of regular semisimple subalgebras of semisimple Lie algebras, Dynkin introduced the notion of a \(\pi\)-system. This is a subset of the roots such that pairwise differences of its elements are not roots. These arise as simple systems of regular semisimple subalgebras. Morita and Naito generalized this notion to all symmetrizable Kac-Moody algebras. In this work, we systematically develop the theory of \(\pi\)-systems of symmetrizable Kac-Moody algebras and establish their fundamental properties. We study the orbits of the Weyl group on \(\pi\)-systems, and completely determine the number of orbits in many cases of interest in physics. In particular, we show that there is a unique \(\pi\)-system of type \(HA_1^{(1)}\) (the Feingold-Frenkel algebra) in \(E_{10}\) (the rank 10 hyperbolic algebra) up to Weyl group action and negation.</description><subject>Algebra</subject><subject>Group theory</subject><subject>Lie groups</subject><subject>Orbits</subject><subject>Roots</subject><subject>Set theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw16iOScrPSSmuzAVSMQWZtTGausWVxSWpucUK-WkKQPHc1JKizKrEpJxUBe_EZF3f_PyUSoXEnPTUpKLEYh4G1rTEnOJUXijNzaDs5hri7KFbUJRfWJpaXBKflV9alAeUijcytDAzBrrEwNCYOFUAO9g5EA</recordid><startdate>20200224</startdate><enddate>20200224</enddate><creator>Carbone, Lisa</creator><creator>Raghavan, K N</creator><creator>Ransingh, Biswajit</creator><creator>Roy, Krishanu</creator><creator>Viswanath, Sankaran</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200224</creationdate><title>({\boldsymbol\pi}\)-systems of symmetrizable Kac-Moody algebras</title><author>Carbone, Lisa ; Raghavan, K N ; Ransingh, Biswajit ; Roy, Krishanu ; Viswanath, Sankaran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21863331013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Group theory</topic><topic>Lie groups</topic><topic>Orbits</topic><topic>Roots</topic><topic>Set theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Carbone, Lisa</creatorcontrib><creatorcontrib>Raghavan, K N</creatorcontrib><creatorcontrib>Ransingh, Biswajit</creatorcontrib><creatorcontrib>Roy, Krishanu</creatorcontrib><creatorcontrib>Viswanath, Sankaran</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carbone, Lisa</au><au>Raghavan, K N</au><au>Ransingh, Biswajit</au><au>Roy, Krishanu</au><au>Viswanath, Sankaran</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>({\boldsymbol\pi}\)-systems of symmetrizable Kac-Moody algebras</atitle><jtitle>arXiv.org</jtitle><date>2020-02-24</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>As part of his classification of regular semisimple subalgebras of semisimple Lie algebras, Dynkin introduced the notion of a \(\pi\)-system. This is a subset of the roots such that pairwise differences of its elements are not roots. These arise as simple systems of regular semisimple subalgebras. Morita and Naito generalized this notion to all symmetrizable Kac-Moody algebras. In this work, we systematically develop the theory of \(\pi\)-systems of symmetrizable Kac-Moody algebras and establish their fundamental properties. We study the orbits of the Weyl group on \(\pi\)-systems, and completely determine the number of orbits in many cases of interest in physics. In particular, we show that there is a unique \(\pi\)-system of type \(HA_1^{(1)}\) (the Feingold-Frenkel algebra) in \(E_{10}\) (the rank 10 hyperbolic algebra) up to Weyl group action and negation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2186333101 |
source | Free E- Journals |
subjects | Algebra Group theory Lie groups Orbits Roots Set theory |
title | ({\boldsymbol\pi}\)-systems of symmetrizable Kac-Moody algebras |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A47%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=(%7B%5Cboldsymbol%5Cpi%7D%5C)-systems%20of%20symmetrizable%20Kac-Moody%20algebras&rft.jtitle=arXiv.org&rft.au=Carbone,%20Lisa&rft.date=2020-02-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2186333101%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186333101&rft_id=info:pmid/&rfr_iscdi=true |