Maximum distance separable codes to order
Maximum distance separable (MDS) are constructed to required specifications. The codes are explicitly given over finite fields with efficient encoding and decoding algorithms. Series of such codes over finite fields with ratio of distance to length approaching \((1-R)\) for given \(R, \, 0 < R &l...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-02 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hurley, Ted Hurley, Donny Hurley, Barry |
description | Maximum distance separable (MDS) are constructed to required specifications. The codes are explicitly given over finite fields with efficient encoding and decoding algorithms. Series of such codes over finite fields with ratio of distance to length approaching \((1-R)\) for given \(R, \, 0 < R < 1\) are derived. For given rate \(R=\frac{r}{n}\), with \(p\) not dividing \(n\), series of codes over finite fields of characteristic \(p\) are constructed such that the ratio of the distance to the length approaches \((1-R)\). For a given field \(GF(q)\) MDS codes of the form \((q-1,r)\) are constructed for any \(r\). The codes are encompassing, easy to construct with efficient encoding and decoding algorithms of complexity \(\max\{O(n\log n), t^2\}\), where \(t\) is the error-correcting capability of the code. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2186325395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186325395</sourcerecordid><originalsourceid>FETCH-proquest_journals_21863253953</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ9E2syMwtzVVIySwuScxLTlUoTi1ILEpMyklVSM5PSS1WKMlXyC9KSS3iYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I0MLM2MjU2NLU2PiVAEA5bEwiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186325395</pqid></control><display><type>article</type><title>Maximum distance separable codes to order</title><source>Free E- Journals</source><creator>Hurley, Ted ; Hurley, Donny ; Hurley, Barry</creator><creatorcontrib>Hurley, Ted ; Hurley, Donny ; Hurley, Barry</creatorcontrib><description>Maximum distance separable (MDS) are constructed to required specifications. The codes are explicitly given over finite fields with efficient encoding and decoding algorithms. Series of such codes over finite fields with ratio of distance to length approaching \((1-R)\) for given \(R, \, 0 < R < 1\) are derived. For given rate \(R=\frac{r}{n}\), with \(p\) not dividing \(n\), series of codes over finite fields of characteristic \(p\) are constructed such that the ratio of the distance to the length approaches \((1-R)\). For a given field \(GF(q)\) MDS codes of the form \((q-1,r)\) are constructed for any \(r\). The codes are encompassing, easy to construct with efficient encoding and decoding algorithms of complexity \(\max\{O(n\log n), t^2\}\), where \(t\) is the error-correcting capability of the code.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Binary system ; Coding ; Decoding ; Error correction ; Fields (mathematics) ; Series (mathematics)</subject><ispartof>arXiv.org, 2019-02</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Hurley, Ted</creatorcontrib><creatorcontrib>Hurley, Donny</creatorcontrib><creatorcontrib>Hurley, Barry</creatorcontrib><title>Maximum distance separable codes to order</title><title>arXiv.org</title><description>Maximum distance separable (MDS) are constructed to required specifications. The codes are explicitly given over finite fields with efficient encoding and decoding algorithms. Series of such codes over finite fields with ratio of distance to length approaching \((1-R)\) for given \(R, \, 0 < R < 1\) are derived. For given rate \(R=\frac{r}{n}\), with \(p\) not dividing \(n\), series of codes over finite fields of characteristic \(p\) are constructed such that the ratio of the distance to the length approaches \((1-R)\). For a given field \(GF(q)\) MDS codes of the form \((q-1,r)\) are constructed for any \(r\). The codes are encompassing, easy to construct with efficient encoding and decoding algorithms of complexity \(\max\{O(n\log n), t^2\}\), where \(t\) is the error-correcting capability of the code.</description><subject>Algorithms</subject><subject>Binary system</subject><subject>Coding</subject><subject>Decoding</subject><subject>Error correction</subject><subject>Fields (mathematics)</subject><subject>Series (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ9E2syMwtzVVIySwuScxLTlUoTi1ILEpMyklVSM5PSS1WKMlXyC9KSS3iYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I0MLM2MjU2NLU2PiVAEA5bEwiw</recordid><startdate>20190218</startdate><enddate>20190218</enddate><creator>Hurley, Ted</creator><creator>Hurley, Donny</creator><creator>Hurley, Barry</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190218</creationdate><title>Maximum distance separable codes to order</title><author>Hurley, Ted ; Hurley, Donny ; Hurley, Barry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21863253953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Binary system</topic><topic>Coding</topic><topic>Decoding</topic><topic>Error correction</topic><topic>Fields (mathematics)</topic><topic>Series (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Hurley, Ted</creatorcontrib><creatorcontrib>Hurley, Donny</creatorcontrib><creatorcontrib>Hurley, Barry</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hurley, Ted</au><au>Hurley, Donny</au><au>Hurley, Barry</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Maximum distance separable codes to order</atitle><jtitle>arXiv.org</jtitle><date>2019-02-18</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Maximum distance separable (MDS) are constructed to required specifications. The codes are explicitly given over finite fields with efficient encoding and decoding algorithms. Series of such codes over finite fields with ratio of distance to length approaching \((1-R)\) for given \(R, \, 0 < R < 1\) are derived. For given rate \(R=\frac{r}{n}\), with \(p\) not dividing \(n\), series of codes over finite fields of characteristic \(p\) are constructed such that the ratio of the distance to the length approaches \((1-R)\). For a given field \(GF(q)\) MDS codes of the form \((q-1,r)\) are constructed for any \(r\). The codes are encompassing, easy to construct with efficient encoding and decoding algorithms of complexity \(\max\{O(n\log n), t^2\}\), where \(t\) is the error-correcting capability of the code.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2186325395 |
source | Free E- Journals |
subjects | Algorithms Binary system Coding Decoding Error correction Fields (mathematics) Series (mathematics) |
title | Maximum distance separable codes to order |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T04%3A16%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Maximum%20distance%20separable%20codes%20to%20order&rft.jtitle=arXiv.org&rft.au=Hurley,%20Ted&rft.date=2019-02-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2186325395%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186325395&rft_id=info:pmid/&rfr_iscdi=true |