Identifying brain abnormalities from electroencephalogram using evolutionary gravitational neocognitron neural network

Now-a-day’s brain abnormality is one among the dangerous neurological disorders that occurs because of the birth defects, brain stroke, brain injuries, genetic mutation and brain tumor. This brain disorder creates continue melancholia, bipolar disorder, stress disorder (PTSD) and so on. Due to this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2020-04, Vol.79 (15-16), p.10609-10628
Hauptverfasser: Gomathi, P, Baskar, S, Mohamed, Shakeel P, Sarma, Dhulipala V R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10628
container_issue 15-16
container_start_page 10609
container_title Multimedia tools and applications
container_volume 79
creator Gomathi, P
Baskar, S
Mohamed, Shakeel P
Sarma, Dhulipala V R
description Now-a-day’s brain abnormality is one among the dangerous neurological disorders that occurs because of the birth defects, brain stroke, brain injuries, genetic mutation and brain tumor. This brain disorder creates continue melancholia, bipolar disorder, stress disorder (PTSD) and so on. Due to this serious impact of the brain abnormalities, need to be identified within the beginning stage for eliminating the difficulties in humans day to day life. So, the automatic brain abnormality prediction process is created by utilizing electroencephalogram (EEG) for avoiding risk factor in future. As per the discussion, this paper introduces the evolutionary gravitational Neocognitron neural network(GNNN) for recognizing brain abnormalities with effective manner and it is especially suited for humans in war field. Initially, EEG signal is collected from patient; unwanted signal information is eliminated by using multi-linear principal component analysis from pre-processed signal, various features are extracted using affine invariant component analysis method and greedy global optimized features are chosen. The chosen features are analyzed using multi-layer virtual cortex model for predicting abnormal features. Finally the potency of the brain related abnormality prediction process developed using MATLAB tool and efficiency is examined using F-measure, Mathew correlation coefficient error rate, sensitivity, specificity, and accuracy. Along these lines the proposed framework effectively perceives the cerebrum variation from the norm with most astounding precision up to 99.48% with error rate.
doi_str_mv 10.1007/s11042-019-7301-5
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2186305149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186305149</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-fe124c49250ee1827a81317b53ba2af0795588f688aeb36e3afc1012de9839fe3</originalsourceid><addsrcrecordid>eNotjkFPAyEUhInRxFr9Ad5IPKM8WBb2aBq1TZp40XPDbh-VuoUKbE3_vWv1NDNfMpMh5Bb4PXCuHzIArwTj0DAtOTB1RiagtGRaCzgfvTScacXhklzlvOUcaiWqCTks1hiKd0cfNrRN1gdq2xDTzva-eMzUpbij2GNXUsTQ4f7D9nGT7I4O-beDh9gPxcdg05GO_OCLPcWeBoxd3AQ_NsMYhnRi5Tumz2ty4Wyf8eZfp-T9-eltNmfL15fF7HHJ9gCyMIcgqq5qhOKIYIS2BiToVsnWCuu4bpQyxtXGWGxljdK6DjiINTZGNg7llNz97e5T_Bowl9U2Dmk8l1cCTC25gqqRP_wZYfI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186305149</pqid></control><display><type>article</type><title>Identifying brain abnormalities from electroencephalogram using evolutionary gravitational neocognitron neural network</title><source>SpringerNature Journals</source><creator>Gomathi, P ; Baskar, S ; Mohamed, Shakeel P ; Sarma, Dhulipala V R</creator><creatorcontrib>Gomathi, P ; Baskar, S ; Mohamed, Shakeel P ; Sarma, Dhulipala V R</creatorcontrib><description>Now-a-day’s brain abnormality is one among the dangerous neurological disorders that occurs because of the birth defects, brain stroke, brain injuries, genetic mutation and brain tumor. This brain disorder creates continue melancholia, bipolar disorder, stress disorder (PTSD) and so on. Due to this serious impact of the brain abnormalities, need to be identified within the beginning stage for eliminating the difficulties in humans day to day life. So, the automatic brain abnormality prediction process is created by utilizing electroencephalogram (EEG) for avoiding risk factor in future. As per the discussion, this paper introduces the evolutionary gravitational Neocognitron neural network(GNNN) for recognizing brain abnormalities with effective manner and it is especially suited for humans in war field. Initially, EEG signal is collected from patient; unwanted signal information is eliminated by using multi-linear principal component analysis from pre-processed signal, various features are extracted using affine invariant component analysis method and greedy global optimized features are chosen. The chosen features are analyzed using multi-layer virtual cortex model for predicting abnormal features. Finally the potency of the brain related abnormality prediction process developed using MATLAB tool and efficiency is examined using F-measure, Mathew correlation coefficient error rate, sensitivity, specificity, and accuracy. Along these lines the proposed framework effectively perceives the cerebrum variation from the norm with most astounding precision up to 99.48% with error rate.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-019-7301-5</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Abnormalities ; Birth defects ; Brain ; Cerebrum ; Correlation analysis ; Correlation coefficients ; Electroencephalography ; Error analysis ; Error detection ; Feature extraction ; Gravitation ; Head injuries ; Multilayers ; Mutation ; Neural networks ; Neurological diseases ; Predictions ; Principal components analysis ; Risk analysis ; Signal processing</subject><ispartof>Multimedia tools and applications, 2020-04, Vol.79 (15-16), p.10609-10628</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gomathi, P</creatorcontrib><creatorcontrib>Baskar, S</creatorcontrib><creatorcontrib>Mohamed, Shakeel P</creatorcontrib><creatorcontrib>Sarma, Dhulipala V R</creatorcontrib><title>Identifying brain abnormalities from electroencephalogram using evolutionary gravitational neocognitron neural network</title><title>Multimedia tools and applications</title><description>Now-a-day’s brain abnormality is one among the dangerous neurological disorders that occurs because of the birth defects, brain stroke, brain injuries, genetic mutation and brain tumor. This brain disorder creates continue melancholia, bipolar disorder, stress disorder (PTSD) and so on. Due to this serious impact of the brain abnormalities, need to be identified within the beginning stage for eliminating the difficulties in humans day to day life. So, the automatic brain abnormality prediction process is created by utilizing electroencephalogram (EEG) for avoiding risk factor in future. As per the discussion, this paper introduces the evolutionary gravitational Neocognitron neural network(GNNN) for recognizing brain abnormalities with effective manner and it is especially suited for humans in war field. Initially, EEG signal is collected from patient; unwanted signal information is eliminated by using multi-linear principal component analysis from pre-processed signal, various features are extracted using affine invariant component analysis method and greedy global optimized features are chosen. The chosen features are analyzed using multi-layer virtual cortex model for predicting abnormal features. Finally the potency of the brain related abnormality prediction process developed using MATLAB tool and efficiency is examined using F-measure, Mathew correlation coefficient error rate, sensitivity, specificity, and accuracy. Along these lines the proposed framework effectively perceives the cerebrum variation from the norm with most astounding precision up to 99.48% with error rate.</description><subject>Abnormalities</subject><subject>Birth defects</subject><subject>Brain</subject><subject>Cerebrum</subject><subject>Correlation analysis</subject><subject>Correlation coefficients</subject><subject>Electroencephalography</subject><subject>Error analysis</subject><subject>Error detection</subject><subject>Feature extraction</subject><subject>Gravitation</subject><subject>Head injuries</subject><subject>Multilayers</subject><subject>Mutation</subject><subject>Neural networks</subject><subject>Neurological diseases</subject><subject>Predictions</subject><subject>Principal components analysis</subject><subject>Risk analysis</subject><subject>Signal processing</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotjkFPAyEUhInRxFr9Ad5IPKM8WBb2aBq1TZp40XPDbh-VuoUKbE3_vWv1NDNfMpMh5Bb4PXCuHzIArwTj0DAtOTB1RiagtGRaCzgfvTScacXhklzlvOUcaiWqCTks1hiKd0cfNrRN1gdq2xDTzva-eMzUpbij2GNXUsTQ4f7D9nGT7I4O-beDh9gPxcdg05GO_OCLPcWeBoxd3AQ_NsMYhnRi5Tumz2ty4Wyf8eZfp-T9-eltNmfL15fF7HHJ9gCyMIcgqq5qhOKIYIS2BiToVsnWCuu4bpQyxtXGWGxljdK6DjiINTZGNg7llNz97e5T_Bowl9U2Dmk8l1cCTC25gqqRP_wZYfI</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Gomathi, P</creator><creator>Baskar, S</creator><creator>Mohamed, Shakeel P</creator><creator>Sarma, Dhulipala V R</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20200401</creationdate><title>Identifying brain abnormalities from electroencephalogram using evolutionary gravitational neocognitron neural network</title><author>Gomathi, P ; Baskar, S ; Mohamed, Shakeel P ; Sarma, Dhulipala V R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-fe124c49250ee1827a81317b53ba2af0795588f688aeb36e3afc1012de9839fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abnormalities</topic><topic>Birth defects</topic><topic>Brain</topic><topic>Cerebrum</topic><topic>Correlation analysis</topic><topic>Correlation coefficients</topic><topic>Electroencephalography</topic><topic>Error analysis</topic><topic>Error detection</topic><topic>Feature extraction</topic><topic>Gravitation</topic><topic>Head injuries</topic><topic>Multilayers</topic><topic>Mutation</topic><topic>Neural networks</topic><topic>Neurological diseases</topic><topic>Predictions</topic><topic>Principal components analysis</topic><topic>Risk analysis</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomathi, P</creatorcontrib><creatorcontrib>Baskar, S</creatorcontrib><creatorcontrib>Mohamed, Shakeel P</creatorcontrib><creatorcontrib>Sarma, Dhulipala V R</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomathi, P</au><au>Baskar, S</au><au>Mohamed, Shakeel P</au><au>Sarma, Dhulipala V R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying brain abnormalities from electroencephalogram using evolutionary gravitational neocognitron neural network</atitle><jtitle>Multimedia tools and applications</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>79</volume><issue>15-16</issue><spage>10609</spage><epage>10628</epage><pages>10609-10628</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Now-a-day’s brain abnormality is one among the dangerous neurological disorders that occurs because of the birth defects, brain stroke, brain injuries, genetic mutation and brain tumor. This brain disorder creates continue melancholia, bipolar disorder, stress disorder (PTSD) and so on. Due to this serious impact of the brain abnormalities, need to be identified within the beginning stage for eliminating the difficulties in humans day to day life. So, the automatic brain abnormality prediction process is created by utilizing electroencephalogram (EEG) for avoiding risk factor in future. As per the discussion, this paper introduces the evolutionary gravitational Neocognitron neural network(GNNN) for recognizing brain abnormalities with effective manner and it is especially suited for humans in war field. Initially, EEG signal is collected from patient; unwanted signal information is eliminated by using multi-linear principal component analysis from pre-processed signal, various features are extracted using affine invariant component analysis method and greedy global optimized features are chosen. The chosen features are analyzed using multi-layer virtual cortex model for predicting abnormal features. Finally the potency of the brain related abnormality prediction process developed using MATLAB tool and efficiency is examined using F-measure, Mathew correlation coefficient error rate, sensitivity, specificity, and accuracy. Along these lines the proposed framework effectively perceives the cerebrum variation from the norm with most astounding precision up to 99.48% with error rate.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11042-019-7301-5</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2020-04, Vol.79 (15-16), p.10609-10628
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2186305149
source SpringerNature Journals
subjects Abnormalities
Birth defects
Brain
Cerebrum
Correlation analysis
Correlation coefficients
Electroencephalography
Error analysis
Error detection
Feature extraction
Gravitation
Head injuries
Multilayers
Mutation
Neural networks
Neurological diseases
Predictions
Principal components analysis
Risk analysis
Signal processing
title Identifying brain abnormalities from electroencephalogram using evolutionary gravitational neocognitron neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A22%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20brain%20abnormalities%20from%20electroencephalogram%20using%20evolutionary%20gravitational%20neocognitron%20neural%20network&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Gomathi,%20P&rft.date=2020-04-01&rft.volume=79&rft.issue=15-16&rft.spage=10609&rft.epage=10628&rft.pages=10609-10628&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-019-7301-5&rft_dat=%3Cproquest%3E2186305149%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186305149&rft_id=info:pmid/&rfr_iscdi=true