A New Resource of Locally Transposed Dissociation Elements for Screening Gene-Knockout Lines in Silico on the Arabidopsis Genome
We transposed Dissociation (Ds) elements from three start loci on chromosome 5 in Arabidopsis (Nossen ecotype) by using a local transposition system. We determined partial genomic sequences flanking the Ds elements and mapped the elements' insertion sites in 1,173 transposed lines by comparison...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2002-08, Vol.129 (4), p.1695-1699 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1699 |
---|---|
container_issue | 4 |
container_start_page | 1695 |
container_title | Plant physiology (Bethesda) |
container_volume | 129 |
creator | Ito, Takuya Motohashi, Reiko Kuromori, Takashi Saho Mizukado Sakurai, Tetsuya Hiroko Kanahara Seki, Motoaki Shinozaki, Kazuo |
description | We transposed Dissociation (Ds) elements from three start loci on chromosome 5 in Arabidopsis (Nossen ecotype) by using a local transposition system. We determined partial genomic sequences flanking the Ds elements and mapped the elements' insertion sites in 1,173 transposed lines by comparison with the published genomic sequence. Most of the lines contained a single copy of the Ds element. One-half of the lines contained Ds on chromosome 5; in particular, insertion "hot spots" near the three start loci were clearly observed. In the other lines, the Ds elements were transposed across chromosomes. We found other insertion hot spots at the tops of chromosomes 2 and 4, near nucleolus organizer regions 2 and 4, respectively. Another characteristic feature was that the Ds elements tended to transpose near the chromosome ends and rarely transposed near centromeres. The distribution patterns differed among the three start loci, even though they possessed the same Ds construct. More than one-half of the Ds elements were inserted irregularly into the genome; that is, they did not retain the perfect inverted repeat sequence of Ds nor leave perfect target site duplications. This precise analysis of distribution patterns will contribute to a comprehensive understanding of the transposing mechanism. From these Ds insertion sites, we have constructed a database for screening gene-knockout mutants in silico. In 583 of the 1,173 lines, the Ds elements were inserted into protein-coding genes, which suggests that these lines are gene-knockout mutants. The database and individual lines will be available freely for academic use from the RIKEN Bio-Resource Center (http://www.brc.riken.go.jp/Eng/index.html). |
doi_str_mv | 10.1104/pp.002774 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_218630405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4280600</jstor_id><sourcerecordid>4280600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-a4c0b03f0a6125e1fedee0541b1495f3ccfc8c306f9d388bb0f9e3f64ab936a33</originalsourceid><addsrcrecordid>eNpF0U1P3DAQBmCrKioL7aF3VFmVOHAIHcdOcI6rLV9iBVKh58hxxtTbrB08WSFu_ek12hWcPJKfmZFfM_ZVwKkQoH6M4ylAeXamPrCZqGRZlJXSH9kMINegdbPPDohWACCkUJ_YvihF1rqcsX9zfovP_BdS3CSLPDq-jNYMwwt_SCbQGAl7_tMTRevN5GPg5wOuMUzEXUz83ibE4MMjv8SAxU2I9m_cTHzpAxL3gd_7wdvIc9_0B_k8mc73cSRPrw1xjZ_ZnjMD4Zfdech-X5w_LK6K5d3l9WK-LKxs6qkwykIH0oGpRVmhcNgjQqVEJ1RTOWmts9pKqF3TS627DlyD0tXKdI2sjZSH7Pt27pji0wZpalf5xSGvbEuhawkKqoxOtsimSJTQtWPya5NeWgHta9TtOLbbqLP9thu46dbYv8tdthkc74ChnKjLcVpP705qVUGtszvauhVNMb3dq1JDnX_wP2UTkGU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218630405</pqid></control><display><type>article</type><title>A New Resource of Locally Transposed Dissociation Elements for Screening Gene-Knockout Lines in Silico on the Arabidopsis Genome</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ito, Takuya ; Motohashi, Reiko ; Kuromori, Takashi ; Saho Mizukado ; Sakurai, Tetsuya ; Hiroko Kanahara ; Seki, Motoaki ; Shinozaki, Kazuo</creator><creatorcontrib>Ito, Takuya ; Motohashi, Reiko ; Kuromori, Takashi ; Saho Mizukado ; Sakurai, Tetsuya ; Hiroko Kanahara ; Seki, Motoaki ; Shinozaki, Kazuo</creatorcontrib><description>We transposed Dissociation (Ds) elements from three start loci on chromosome 5 in Arabidopsis (Nossen ecotype) by using a local transposition system. We determined partial genomic sequences flanking the Ds elements and mapped the elements' insertion sites in 1,173 transposed lines by comparison with the published genomic sequence. Most of the lines contained a single copy of the Ds element. One-half of the lines contained Ds on chromosome 5; in particular, insertion "hot spots" near the three start loci were clearly observed. In the other lines, the Ds elements were transposed across chromosomes. We found other insertion hot spots at the tops of chromosomes 2 and 4, near nucleolus organizer regions 2 and 4, respectively. Another characteristic feature was that the Ds elements tended to transpose near the chromosome ends and rarely transposed near centromeres. The distribution patterns differed among the three start loci, even though they possessed the same Ds construct. More than one-half of the Ds elements were inserted irregularly into the genome; that is, they did not retain the perfect inverted repeat sequence of Ds nor leave perfect target site duplications. This precise analysis of distribution patterns will contribute to a comprehensive understanding of the transposing mechanism. From these Ds insertion sites, we have constructed a database for screening gene-knockout mutants in silico. In 583 of the 1,173 lines, the Ds elements were inserted into protein-coding genes, which suggests that these lines are gene-knockout mutants. The database and individual lines will be available freely for academic use from the RIKEN Bio-Resource Center (http://www.brc.riken.go.jp/Eng/index.html).</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.002774</identifier><identifier>PMID: 12177482</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Arabidopsis - genetics ; Base Sequence ; Biological and medical sciences ; Chromosome Mapping ; Chromosomes ; Data lines ; Databases, Factual ; DNA ; DNA Transposable Elements - genetics ; DNA, Plant - genetics ; Fundamental and applied biological sciences. Psychology ; Genetic loci ; Genetic transposition ; Genetics, Genomics, and Molecular Evolution ; Genic rearrangement. Recombination. Transposable element ; Genome, Plant ; Genomes ; Genomics ; Internet ; Molecular and cellular biology ; Molecular genetics ; Molecular Sequence Data ; Mutagenesis, Insertional - methods ; Mutation ; Plants ; Polymerase Chain Reaction ; Transposons</subject><ispartof>Plant physiology (Bethesda), 2002-08, Vol.129 (4), p.1695-1699</ispartof><rights>Copyright 2002 American Society of Plant Biologists</rights><rights>2002 INIST-CNRS</rights><rights>Copyright American Society of Plant Physiologists Aug 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-a4c0b03f0a6125e1fedee0541b1495f3ccfc8c306f9d388bb0f9e3f64ab936a33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4280600$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4280600$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13845068$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12177482$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ito, Takuya</creatorcontrib><creatorcontrib>Motohashi, Reiko</creatorcontrib><creatorcontrib>Kuromori, Takashi</creatorcontrib><creatorcontrib>Saho Mizukado</creatorcontrib><creatorcontrib>Sakurai, Tetsuya</creatorcontrib><creatorcontrib>Hiroko Kanahara</creatorcontrib><creatorcontrib>Seki, Motoaki</creatorcontrib><creatorcontrib>Shinozaki, Kazuo</creatorcontrib><title>A New Resource of Locally Transposed Dissociation Elements for Screening Gene-Knockout Lines in Silico on the Arabidopsis Genome</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>We transposed Dissociation (Ds) elements from three start loci on chromosome 5 in Arabidopsis (Nossen ecotype) by using a local transposition system. We determined partial genomic sequences flanking the Ds elements and mapped the elements' insertion sites in 1,173 transposed lines by comparison with the published genomic sequence. Most of the lines contained a single copy of the Ds element. One-half of the lines contained Ds on chromosome 5; in particular, insertion "hot spots" near the three start loci were clearly observed. In the other lines, the Ds elements were transposed across chromosomes. We found other insertion hot spots at the tops of chromosomes 2 and 4, near nucleolus organizer regions 2 and 4, respectively. Another characteristic feature was that the Ds elements tended to transpose near the chromosome ends and rarely transposed near centromeres. The distribution patterns differed among the three start loci, even though they possessed the same Ds construct. More than one-half of the Ds elements were inserted irregularly into the genome; that is, they did not retain the perfect inverted repeat sequence of Ds nor leave perfect target site duplications. This precise analysis of distribution patterns will contribute to a comprehensive understanding of the transposing mechanism. From these Ds insertion sites, we have constructed a database for screening gene-knockout mutants in silico. In 583 of the 1,173 lines, the Ds elements were inserted into protein-coding genes, which suggests that these lines are gene-knockout mutants. The database and individual lines will be available freely for academic use from the RIKEN Bio-Resource Center (http://www.brc.riken.go.jp/Eng/index.html).</description><subject>Arabidopsis - genetics</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Chromosome Mapping</subject><subject>Chromosomes</subject><subject>Data lines</subject><subject>Databases, Factual</subject><subject>DNA</subject><subject>DNA Transposable Elements - genetics</subject><subject>DNA, Plant - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic loci</subject><subject>Genetic transposition</subject><subject>Genetics, Genomics, and Molecular Evolution</subject><subject>Genic rearrangement. Recombination. Transposable element</subject><subject>Genome, Plant</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Internet</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Insertional - methods</subject><subject>Mutation</subject><subject>Plants</subject><subject>Polymerase Chain Reaction</subject><subject>Transposons</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpF0U1P3DAQBmCrKioL7aF3VFmVOHAIHcdOcI6rLV9iBVKh58hxxtTbrB08WSFu_ek12hWcPJKfmZFfM_ZVwKkQoH6M4ylAeXamPrCZqGRZlJXSH9kMINegdbPPDohWACCkUJ_YvihF1rqcsX9zfovP_BdS3CSLPDq-jNYMwwt_SCbQGAl7_tMTRevN5GPg5wOuMUzEXUz83ibE4MMjv8SAxU2I9m_cTHzpAxL3gd_7wdvIc9_0B_k8mc73cSRPrw1xjZ_ZnjMD4Zfdech-X5w_LK6K5d3l9WK-LKxs6qkwykIH0oGpRVmhcNgjQqVEJ1RTOWmts9pKqF3TS627DlyD0tXKdI2sjZSH7Pt27pji0wZpalf5xSGvbEuhawkKqoxOtsimSJTQtWPya5NeWgHta9TtOLbbqLP9thu46dbYv8tdthkc74ChnKjLcVpP705qVUGtszvauhVNMb3dq1JDnX_wP2UTkGU</recordid><startdate>20020801</startdate><enddate>20020801</enddate><creator>Ito, Takuya</creator><creator>Motohashi, Reiko</creator><creator>Kuromori, Takashi</creator><creator>Saho Mizukado</creator><creator>Sakurai, Tetsuya</creator><creator>Hiroko Kanahara</creator><creator>Seki, Motoaki</creator><creator>Shinozaki, Kazuo</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20020801</creationdate><title>A New Resource of Locally Transposed Dissociation Elements for Screening Gene-Knockout Lines in Silico on the Arabidopsis Genome</title><author>Ito, Takuya ; Motohashi, Reiko ; Kuromori, Takashi ; Saho Mizukado ; Sakurai, Tetsuya ; Hiroko Kanahara ; Seki, Motoaki ; Shinozaki, Kazuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-a4c0b03f0a6125e1fedee0541b1495f3ccfc8c306f9d388bb0f9e3f64ab936a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Arabidopsis - genetics</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Chromosome Mapping</topic><topic>Chromosomes</topic><topic>Data lines</topic><topic>Databases, Factual</topic><topic>DNA</topic><topic>DNA Transposable Elements - genetics</topic><topic>DNA, Plant - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic loci</topic><topic>Genetic transposition</topic><topic>Genetics, Genomics, and Molecular Evolution</topic><topic>Genic rearrangement. Recombination. Transposable element</topic><topic>Genome, Plant</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Internet</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Insertional - methods</topic><topic>Mutation</topic><topic>Plants</topic><topic>Polymerase Chain Reaction</topic><topic>Transposons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ito, Takuya</creatorcontrib><creatorcontrib>Motohashi, Reiko</creatorcontrib><creatorcontrib>Kuromori, Takashi</creatorcontrib><creatorcontrib>Saho Mizukado</creatorcontrib><creatorcontrib>Sakurai, Tetsuya</creatorcontrib><creatorcontrib>Hiroko Kanahara</creatorcontrib><creatorcontrib>Seki, Motoaki</creatorcontrib><creatorcontrib>Shinozaki, Kazuo</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ito, Takuya</au><au>Motohashi, Reiko</au><au>Kuromori, Takashi</au><au>Saho Mizukado</au><au>Sakurai, Tetsuya</au><au>Hiroko Kanahara</au><au>Seki, Motoaki</au><au>Shinozaki, Kazuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Resource of Locally Transposed Dissociation Elements for Screening Gene-Knockout Lines in Silico on the Arabidopsis Genome</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2002-08-01</date><risdate>2002</risdate><volume>129</volume><issue>4</issue><spage>1695</spage><epage>1699</epage><pages>1695-1699</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>We transposed Dissociation (Ds) elements from three start loci on chromosome 5 in Arabidopsis (Nossen ecotype) by using a local transposition system. We determined partial genomic sequences flanking the Ds elements and mapped the elements' insertion sites in 1,173 transposed lines by comparison with the published genomic sequence. Most of the lines contained a single copy of the Ds element. One-half of the lines contained Ds on chromosome 5; in particular, insertion "hot spots" near the three start loci were clearly observed. In the other lines, the Ds elements were transposed across chromosomes. We found other insertion hot spots at the tops of chromosomes 2 and 4, near nucleolus organizer regions 2 and 4, respectively. Another characteristic feature was that the Ds elements tended to transpose near the chromosome ends and rarely transposed near centromeres. The distribution patterns differed among the three start loci, even though they possessed the same Ds construct. More than one-half of the Ds elements were inserted irregularly into the genome; that is, they did not retain the perfect inverted repeat sequence of Ds nor leave perfect target site duplications. This precise analysis of distribution patterns will contribute to a comprehensive understanding of the transposing mechanism. From these Ds insertion sites, we have constructed a database for screening gene-knockout mutants in silico. In 583 of the 1,173 lines, the Ds elements were inserted into protein-coding genes, which suggests that these lines are gene-knockout mutants. The database and individual lines will be available freely for academic use from the RIKEN Bio-Resource Center (http://www.brc.riken.go.jp/Eng/index.html).</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>12177482</pmid><doi>10.1104/pp.002774</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2002-08, Vol.129 (4), p.1695-1699 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_proquest_journals_218630405 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals |
subjects | Arabidopsis - genetics Base Sequence Biological and medical sciences Chromosome Mapping Chromosomes Data lines Databases, Factual DNA DNA Transposable Elements - genetics DNA, Plant - genetics Fundamental and applied biological sciences. Psychology Genetic loci Genetic transposition Genetics, Genomics, and Molecular Evolution Genic rearrangement. Recombination. Transposable element Genome, Plant Genomes Genomics Internet Molecular and cellular biology Molecular genetics Molecular Sequence Data Mutagenesis, Insertional - methods Mutation Plants Polymerase Chain Reaction Transposons |
title | A New Resource of Locally Transposed Dissociation Elements for Screening Gene-Knockout Lines in Silico on the Arabidopsis Genome |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A36%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Resource%20of%20Locally%20Transposed%20Dissociation%20Elements%20for%20Screening%20Gene-Knockout%20Lines%20in%20Silico%20on%20the%20Arabidopsis%20Genome&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Ito,%20Takuya&rft.date=2002-08-01&rft.volume=129&rft.issue=4&rft.spage=1695&rft.epage=1699&rft.pages=1695-1699&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.002774&rft_dat=%3Cjstor_proqu%3E4280600%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218630405&rft_id=info:pmid/12177482&rft_jstor_id=4280600&rfr_iscdi=true |