The Interaction between Electricigens and Carbon Nanotube Forest and Electricity Generation Performance in MFC

Carbon nanotube forest (CNTFs) is grown vertically on the surface of highly conductive mesophase pitch carbon fibers (Pitch‐CFs) in the chemical vapor deposition method. Then the CNTFs‐modified CFs (CNTFs‐Pitch‐CF) as an anode material is assembled into the single chamber microbial fuel cells (MFCs)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy technology (Weinheim, Germany) Germany), 2019-02, Vol.7 (2), p.188-192
Hauptverfasser: Zhao, Na, Ma, Zhaokun, Song, Huaihe, Xie, Yangen, Wang, Dingling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 192
container_issue 2
container_start_page 188
container_title Energy technology (Weinheim, Germany)
container_volume 7
creator Zhao, Na
Ma, Zhaokun
Song, Huaihe
Xie, Yangen
Wang, Dingling
description Carbon nanotube forest (CNTFs) is grown vertically on the surface of highly conductive mesophase pitch carbon fibers (Pitch‐CFs) in the chemical vapor deposition method. Then the CNTFs‐modified CFs (CNTFs‐Pitch‐CF) as an anode material is assembled into the single chamber microbial fuel cells (MFCs). Interaction between electricigens and carbon nanotubes (CNTs) is investigated. The toxicity of the CNTs can make electricigens expend energy or electrons to produce exopolysaccharid (EPS) as much as possible. Accordingly, this leads to low voltage and the long start up time for the CNTFs‐Pitch‐CF anode in the early period. When the activity of electricigens with the EPS reaches a stable state over time, the output voltage rises rapidly and the maximum power density of the CNTFs‐Pitch‐CF‐equiped MFC is increased to 1112 mW/m2, which is approximately 1.55‐fold higher than Pitch‐CF‐equiped MFC. And the CNTFs‐Pitch‐CF‐equiped MFC can keep high electricity generation performance of MFCs for a long time, which is 75 % larger than the Pitch‐CF‐equiped MFC. This method of the CNTFs modifying the CFs provides a new idea for increasing the electricity generation performance of the MFCs. Mechanism analysis The schematic is used to explain the interaction between the carbon nanotubes(CNTs) and electricigens. CNTs can stimulate the epidermis of elctricigens and cause biological response, making electricigens expend energy or electrons to produce exopolysaccharid (EPS). When EPS is sufficient to counteract the stimulation or toxicity of CNTs, the rough surface and forest structure of CNTs modified anode can greatly decrease the internal resistance and promote the extracellular electron transfer.
doi_str_mv 10.1002/ente.201800377
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2186240567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186240567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3567-a600a736dcf961438a2bb5d6f8fb6df38fef183aed3a5715ee246e7fd346717a3</originalsourceid><addsrcrecordid>eNqFkL1vwjAQxa2qlYooa2dLnUPPdmI7Y4UCRaIfA50tJzm3QeBQJwjx39dARcdOd9L93nunR8g9gzED4I_oexxzYBpAKHVFBpzlaZLyXF5fdq1vyajrVgDAIBMZiAHxyy-k8ygOtuqb1tMS-z2ip8Uaqz40VfOJvqPW13RiQxmBV-vbflcinbYBu_50usD9gc7QR7OT1zsG14aN9RXSxtOX6eSO3Di77nD0O4fkY1osJ8_J4m02nzwtkkpkUiVWAlglZF25XLJUaMvLMqul066UtRPaoWNaWKyFzRTLEHkqUblapFIxZcWQPJx9t6H93sU3zardBR8jDWda8hRiTKTGZ6oKbdcFdGYbmo0NB8PAHGs1x1rNpdYoyM-CfbPGwz-0KV6XxZ_2BxBRfPo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186240567</pqid></control><display><type>article</type><title>The Interaction between Electricigens and Carbon Nanotube Forest and Electricity Generation Performance in MFC</title><source>Access via Wiley Online Library</source><creator>Zhao, Na ; Ma, Zhaokun ; Song, Huaihe ; Xie, Yangen ; Wang, Dingling</creator><creatorcontrib>Zhao, Na ; Ma, Zhaokun ; Song, Huaihe ; Xie, Yangen ; Wang, Dingling</creatorcontrib><description>Carbon nanotube forest (CNTFs) is grown vertically on the surface of highly conductive mesophase pitch carbon fibers (Pitch‐CFs) in the chemical vapor deposition method. Then the CNTFs‐modified CFs (CNTFs‐Pitch‐CF) as an anode material is assembled into the single chamber microbial fuel cells (MFCs). Interaction between electricigens and carbon nanotubes (CNTs) is investigated. The toxicity of the CNTs can make electricigens expend energy or electrons to produce exopolysaccharid (EPS) as much as possible. Accordingly, this leads to low voltage and the long start up time for the CNTFs‐Pitch‐CF anode in the early period. When the activity of electricigens with the EPS reaches a stable state over time, the output voltage rises rapidly and the maximum power density of the CNTFs‐Pitch‐CF‐equiped MFC is increased to 1112 mW/m2, which is approximately 1.55‐fold higher than Pitch‐CF‐equiped MFC. And the CNTFs‐Pitch‐CF‐equiped MFC can keep high electricity generation performance of MFCs for a long time, which is 75 % larger than the Pitch‐CF‐equiped MFC. This method of the CNTFs modifying the CFs provides a new idea for increasing the electricity generation performance of the MFCs. Mechanism analysis The schematic is used to explain the interaction between the carbon nanotubes(CNTs) and electricigens. CNTs can stimulate the epidermis of elctricigens and cause biological response, making electricigens expend energy or electrons to produce exopolysaccharid (EPS). When EPS is sufficient to counteract the stimulation or toxicity of CNTs, the rough surface and forest structure of CNTs modified anode can greatly decrease the internal resistance and promote the extracellular electron transfer.</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.201800377</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Biochemical fuel cells ; Carbon ; Carbon fibers ; carbon nanotube forest ; Carbon nanotubes ; Chemical vapor deposition ; Electricity ; Electricity generation ; Electrode materials ; exopolysaccharid ; extracellular electron transfer ; Fuel technology ; Low voltage ; Maximum power density ; Mesophase ; microbial fuel cells ; Microorganisms ; Nanotechnology ; Organic chemistry ; Start up ; Toxicity</subject><ispartof>Energy technology (Weinheim, Germany), 2019-02, Vol.7 (2), p.188-192</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3567-a600a736dcf961438a2bb5d6f8fb6df38fef183aed3a5715ee246e7fd346717a3</citedby><cites>FETCH-LOGICAL-c3567-a600a736dcf961438a2bb5d6f8fb6df38fef183aed3a5715ee246e7fd346717a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fente.201800377$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fente.201800377$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhao, Na</creatorcontrib><creatorcontrib>Ma, Zhaokun</creatorcontrib><creatorcontrib>Song, Huaihe</creatorcontrib><creatorcontrib>Xie, Yangen</creatorcontrib><creatorcontrib>Wang, Dingling</creatorcontrib><title>The Interaction between Electricigens and Carbon Nanotube Forest and Electricity Generation Performance in MFC</title><title>Energy technology (Weinheim, Germany)</title><description>Carbon nanotube forest (CNTFs) is grown vertically on the surface of highly conductive mesophase pitch carbon fibers (Pitch‐CFs) in the chemical vapor deposition method. Then the CNTFs‐modified CFs (CNTFs‐Pitch‐CF) as an anode material is assembled into the single chamber microbial fuel cells (MFCs). Interaction between electricigens and carbon nanotubes (CNTs) is investigated. The toxicity of the CNTs can make electricigens expend energy or electrons to produce exopolysaccharid (EPS) as much as possible. Accordingly, this leads to low voltage and the long start up time for the CNTFs‐Pitch‐CF anode in the early period. When the activity of electricigens with the EPS reaches a stable state over time, the output voltage rises rapidly and the maximum power density of the CNTFs‐Pitch‐CF‐equiped MFC is increased to 1112 mW/m2, which is approximately 1.55‐fold higher than Pitch‐CF‐equiped MFC. And the CNTFs‐Pitch‐CF‐equiped MFC can keep high electricity generation performance of MFCs for a long time, which is 75 % larger than the Pitch‐CF‐equiped MFC. This method of the CNTFs modifying the CFs provides a new idea for increasing the electricity generation performance of the MFCs. Mechanism analysis The schematic is used to explain the interaction between the carbon nanotubes(CNTs) and electricigens. CNTs can stimulate the epidermis of elctricigens and cause biological response, making electricigens expend energy or electrons to produce exopolysaccharid (EPS). When EPS is sufficient to counteract the stimulation or toxicity of CNTs, the rough surface and forest structure of CNTs modified anode can greatly decrease the internal resistance and promote the extracellular electron transfer.</description><subject>Anodes</subject><subject>Biochemical fuel cells</subject><subject>Carbon</subject><subject>Carbon fibers</subject><subject>carbon nanotube forest</subject><subject>Carbon nanotubes</subject><subject>Chemical vapor deposition</subject><subject>Electricity</subject><subject>Electricity generation</subject><subject>Electrode materials</subject><subject>exopolysaccharid</subject><subject>extracellular electron transfer</subject><subject>Fuel technology</subject><subject>Low voltage</subject><subject>Maximum power density</subject><subject>Mesophase</subject><subject>microbial fuel cells</subject><subject>Microorganisms</subject><subject>Nanotechnology</subject><subject>Organic chemistry</subject><subject>Start up</subject><subject>Toxicity</subject><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkL1vwjAQxa2qlYooa2dLnUPPdmI7Y4UCRaIfA50tJzm3QeBQJwjx39dARcdOd9L93nunR8g9gzED4I_oexxzYBpAKHVFBpzlaZLyXF5fdq1vyajrVgDAIBMZiAHxyy-k8ygOtuqb1tMS-z2ip8Uaqz40VfOJvqPW13RiQxmBV-vbflcinbYBu_50usD9gc7QR7OT1zsG14aN9RXSxtOX6eSO3Di77nD0O4fkY1osJ8_J4m02nzwtkkpkUiVWAlglZF25XLJUaMvLMqul066UtRPaoWNaWKyFzRTLEHkqUblapFIxZcWQPJx9t6H93sU3zardBR8jDWda8hRiTKTGZ6oKbdcFdGYbmo0NB8PAHGs1x1rNpdYoyM-CfbPGwz-0KV6XxZ_2BxBRfPo</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Zhao, Na</creator><creator>Ma, Zhaokun</creator><creator>Song, Huaihe</creator><creator>Xie, Yangen</creator><creator>Wang, Dingling</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201902</creationdate><title>The Interaction between Electricigens and Carbon Nanotube Forest and Electricity Generation Performance in MFC</title><author>Zhao, Na ; Ma, Zhaokun ; Song, Huaihe ; Xie, Yangen ; Wang, Dingling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3567-a600a736dcf961438a2bb5d6f8fb6df38fef183aed3a5715ee246e7fd346717a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anodes</topic><topic>Biochemical fuel cells</topic><topic>Carbon</topic><topic>Carbon fibers</topic><topic>carbon nanotube forest</topic><topic>Carbon nanotubes</topic><topic>Chemical vapor deposition</topic><topic>Electricity</topic><topic>Electricity generation</topic><topic>Electrode materials</topic><topic>exopolysaccharid</topic><topic>extracellular electron transfer</topic><topic>Fuel technology</topic><topic>Low voltage</topic><topic>Maximum power density</topic><topic>Mesophase</topic><topic>microbial fuel cells</topic><topic>Microorganisms</topic><topic>Nanotechnology</topic><topic>Organic chemistry</topic><topic>Start up</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Na</creatorcontrib><creatorcontrib>Ma, Zhaokun</creatorcontrib><creatorcontrib>Song, Huaihe</creatorcontrib><creatorcontrib>Xie, Yangen</creatorcontrib><creatorcontrib>Wang, Dingling</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Na</au><au>Ma, Zhaokun</au><au>Song, Huaihe</au><au>Xie, Yangen</au><au>Wang, Dingling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Interaction between Electricigens and Carbon Nanotube Forest and Electricity Generation Performance in MFC</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><date>2019-02</date><risdate>2019</risdate><volume>7</volume><issue>2</issue><spage>188</spage><epage>192</epage><pages>188-192</pages><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>Carbon nanotube forest (CNTFs) is grown vertically on the surface of highly conductive mesophase pitch carbon fibers (Pitch‐CFs) in the chemical vapor deposition method. Then the CNTFs‐modified CFs (CNTFs‐Pitch‐CF) as an anode material is assembled into the single chamber microbial fuel cells (MFCs). Interaction between electricigens and carbon nanotubes (CNTs) is investigated. The toxicity of the CNTs can make electricigens expend energy or electrons to produce exopolysaccharid (EPS) as much as possible. Accordingly, this leads to low voltage and the long start up time for the CNTFs‐Pitch‐CF anode in the early period. When the activity of electricigens with the EPS reaches a stable state over time, the output voltage rises rapidly and the maximum power density of the CNTFs‐Pitch‐CF‐equiped MFC is increased to 1112 mW/m2, which is approximately 1.55‐fold higher than Pitch‐CF‐equiped MFC. And the CNTFs‐Pitch‐CF‐equiped MFC can keep high electricity generation performance of MFCs for a long time, which is 75 % larger than the Pitch‐CF‐equiped MFC. This method of the CNTFs modifying the CFs provides a new idea for increasing the electricity generation performance of the MFCs. Mechanism analysis The schematic is used to explain the interaction between the carbon nanotubes(CNTs) and electricigens. CNTs can stimulate the epidermis of elctricigens and cause biological response, making electricigens expend energy or electrons to produce exopolysaccharid (EPS). When EPS is sufficient to counteract the stimulation or toxicity of CNTs, the rough surface and forest structure of CNTs modified anode can greatly decrease the internal resistance and promote the extracellular electron transfer.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ente.201800377</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2194-4288
ispartof Energy technology (Weinheim, Germany), 2019-02, Vol.7 (2), p.188-192
issn 2194-4288
2194-4296
language eng
recordid cdi_proquest_journals_2186240567
source Access via Wiley Online Library
subjects Anodes
Biochemical fuel cells
Carbon
Carbon fibers
carbon nanotube forest
Carbon nanotubes
Chemical vapor deposition
Electricity
Electricity generation
Electrode materials
exopolysaccharid
extracellular electron transfer
Fuel technology
Low voltage
Maximum power density
Mesophase
microbial fuel cells
Microorganisms
Nanotechnology
Organic chemistry
Start up
Toxicity
title The Interaction between Electricigens and Carbon Nanotube Forest and Electricity Generation Performance in MFC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A10%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Interaction%20between%20Electricigens%20and%20Carbon%20Nanotube%20Forest%20and%20Electricity%20Generation%20Performance%20in%20MFC&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Zhao,%20Na&rft.date=2019-02&rft.volume=7&rft.issue=2&rft.spage=188&rft.epage=192&rft.pages=188-192&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.201800377&rft_dat=%3Cproquest_cross%3E2186240567%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186240567&rft_id=info:pmid/&rfr_iscdi=true