The Interaction between Electricigens and Carbon Nanotube Forest and Electricity Generation Performance in MFC
Carbon nanotube forest (CNTFs) is grown vertically on the surface of highly conductive mesophase pitch carbon fibers (Pitch‐CFs) in the chemical vapor deposition method. Then the CNTFs‐modified CFs (CNTFs‐Pitch‐CF) as an anode material is assembled into the single chamber microbial fuel cells (MFCs)...
Gespeichert in:
Veröffentlicht in: | Energy technology (Weinheim, Germany) Germany), 2019-02, Vol.7 (2), p.188-192 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 192 |
---|---|
container_issue | 2 |
container_start_page | 188 |
container_title | Energy technology (Weinheim, Germany) |
container_volume | 7 |
creator | Zhao, Na Ma, Zhaokun Song, Huaihe Xie, Yangen Wang, Dingling |
description | Carbon nanotube forest (CNTFs) is grown vertically on the surface of highly conductive mesophase pitch carbon fibers (Pitch‐CFs) in the chemical vapor deposition method. Then the CNTFs‐modified CFs (CNTFs‐Pitch‐CF) as an anode material is assembled into the single chamber microbial fuel cells (MFCs). Interaction between electricigens and carbon nanotubes (CNTs) is investigated. The toxicity of the CNTs can make electricigens expend energy or electrons to produce exopolysaccharid (EPS) as much as possible. Accordingly, this leads to low voltage and the long start up time for the CNTFs‐Pitch‐CF anode in the early period. When the activity of electricigens with the EPS reaches a stable state over time, the output voltage rises rapidly and the maximum power density of the CNTFs‐Pitch‐CF‐equiped MFC is increased to 1112 mW/m2, which is approximately 1.55‐fold higher than Pitch‐CF‐equiped MFC. And the CNTFs‐Pitch‐CF‐equiped MFC can keep high electricity generation performance of MFCs for a long time, which is 75 % larger than the Pitch‐CF‐equiped MFC. This method of the CNTFs modifying the CFs provides a new idea for increasing the electricity generation performance of the MFCs.
Mechanism analysis The schematic is used to explain the interaction between the carbon nanotubes(CNTs) and electricigens. CNTs can stimulate the epidermis of elctricigens and cause biological response, making electricigens expend energy or electrons to produce exopolysaccharid (EPS). When EPS is sufficient to counteract the stimulation or toxicity of CNTs, the rough surface and forest structure of CNTs modified anode can greatly decrease the internal resistance and promote the extracellular electron transfer. |
doi_str_mv | 10.1002/ente.201800377 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2186240567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186240567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3567-a600a736dcf961438a2bb5d6f8fb6df38fef183aed3a5715ee246e7fd346717a3</originalsourceid><addsrcrecordid>eNqFkL1vwjAQxa2qlYooa2dLnUPPdmI7Y4UCRaIfA50tJzm3QeBQJwjx39dARcdOd9L93nunR8g9gzED4I_oexxzYBpAKHVFBpzlaZLyXF5fdq1vyajrVgDAIBMZiAHxyy-k8ygOtuqb1tMS-z2ip8Uaqz40VfOJvqPW13RiQxmBV-vbflcinbYBu_50usD9gc7QR7OT1zsG14aN9RXSxtOX6eSO3Di77nD0O4fkY1osJ8_J4m02nzwtkkpkUiVWAlglZF25XLJUaMvLMqul066UtRPaoWNaWKyFzRTLEHkqUblapFIxZcWQPJx9t6H93sU3zardBR8jDWda8hRiTKTGZ6oKbdcFdGYbmo0NB8PAHGs1x1rNpdYoyM-CfbPGwz-0KV6XxZ_2BxBRfPo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186240567</pqid></control><display><type>article</type><title>The Interaction between Electricigens and Carbon Nanotube Forest and Electricity Generation Performance in MFC</title><source>Access via Wiley Online Library</source><creator>Zhao, Na ; Ma, Zhaokun ; Song, Huaihe ; Xie, Yangen ; Wang, Dingling</creator><creatorcontrib>Zhao, Na ; Ma, Zhaokun ; Song, Huaihe ; Xie, Yangen ; Wang, Dingling</creatorcontrib><description>Carbon nanotube forest (CNTFs) is grown vertically on the surface of highly conductive mesophase pitch carbon fibers (Pitch‐CFs) in the chemical vapor deposition method. Then the CNTFs‐modified CFs (CNTFs‐Pitch‐CF) as an anode material is assembled into the single chamber microbial fuel cells (MFCs). Interaction between electricigens and carbon nanotubes (CNTs) is investigated. The toxicity of the CNTs can make electricigens expend energy or electrons to produce exopolysaccharid (EPS) as much as possible. Accordingly, this leads to low voltage and the long start up time for the CNTFs‐Pitch‐CF anode in the early period. When the activity of electricigens with the EPS reaches a stable state over time, the output voltage rises rapidly and the maximum power density of the CNTFs‐Pitch‐CF‐equiped MFC is increased to 1112 mW/m2, which is approximately 1.55‐fold higher than Pitch‐CF‐equiped MFC. And the CNTFs‐Pitch‐CF‐equiped MFC can keep high electricity generation performance of MFCs for a long time, which is 75 % larger than the Pitch‐CF‐equiped MFC. This method of the CNTFs modifying the CFs provides a new idea for increasing the electricity generation performance of the MFCs.
Mechanism analysis The schematic is used to explain the interaction between the carbon nanotubes(CNTs) and electricigens. CNTs can stimulate the epidermis of elctricigens and cause biological response, making electricigens expend energy or electrons to produce exopolysaccharid (EPS). When EPS is sufficient to counteract the stimulation or toxicity of CNTs, the rough surface and forest structure of CNTs modified anode can greatly decrease the internal resistance and promote the extracellular electron transfer.</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.201800377</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Biochemical fuel cells ; Carbon ; Carbon fibers ; carbon nanotube forest ; Carbon nanotubes ; Chemical vapor deposition ; Electricity ; Electricity generation ; Electrode materials ; exopolysaccharid ; extracellular electron transfer ; Fuel technology ; Low voltage ; Maximum power density ; Mesophase ; microbial fuel cells ; Microorganisms ; Nanotechnology ; Organic chemistry ; Start up ; Toxicity</subject><ispartof>Energy technology (Weinheim, Germany), 2019-02, Vol.7 (2), p.188-192</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3567-a600a736dcf961438a2bb5d6f8fb6df38fef183aed3a5715ee246e7fd346717a3</citedby><cites>FETCH-LOGICAL-c3567-a600a736dcf961438a2bb5d6f8fb6df38fef183aed3a5715ee246e7fd346717a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fente.201800377$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fente.201800377$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhao, Na</creatorcontrib><creatorcontrib>Ma, Zhaokun</creatorcontrib><creatorcontrib>Song, Huaihe</creatorcontrib><creatorcontrib>Xie, Yangen</creatorcontrib><creatorcontrib>Wang, Dingling</creatorcontrib><title>The Interaction between Electricigens and Carbon Nanotube Forest and Electricity Generation Performance in MFC</title><title>Energy technology (Weinheim, Germany)</title><description>Carbon nanotube forest (CNTFs) is grown vertically on the surface of highly conductive mesophase pitch carbon fibers (Pitch‐CFs) in the chemical vapor deposition method. Then the CNTFs‐modified CFs (CNTFs‐Pitch‐CF) as an anode material is assembled into the single chamber microbial fuel cells (MFCs). Interaction between electricigens and carbon nanotubes (CNTs) is investigated. The toxicity of the CNTs can make electricigens expend energy or electrons to produce exopolysaccharid (EPS) as much as possible. Accordingly, this leads to low voltage and the long start up time for the CNTFs‐Pitch‐CF anode in the early period. When the activity of electricigens with the EPS reaches a stable state over time, the output voltage rises rapidly and the maximum power density of the CNTFs‐Pitch‐CF‐equiped MFC is increased to 1112 mW/m2, which is approximately 1.55‐fold higher than Pitch‐CF‐equiped MFC. And the CNTFs‐Pitch‐CF‐equiped MFC can keep high electricity generation performance of MFCs for a long time, which is 75 % larger than the Pitch‐CF‐equiped MFC. This method of the CNTFs modifying the CFs provides a new idea for increasing the electricity generation performance of the MFCs.
Mechanism analysis The schematic is used to explain the interaction between the carbon nanotubes(CNTs) and electricigens. CNTs can stimulate the epidermis of elctricigens and cause biological response, making electricigens expend energy or electrons to produce exopolysaccharid (EPS). When EPS is sufficient to counteract the stimulation or toxicity of CNTs, the rough surface and forest structure of CNTs modified anode can greatly decrease the internal resistance and promote the extracellular electron transfer.</description><subject>Anodes</subject><subject>Biochemical fuel cells</subject><subject>Carbon</subject><subject>Carbon fibers</subject><subject>carbon nanotube forest</subject><subject>Carbon nanotubes</subject><subject>Chemical vapor deposition</subject><subject>Electricity</subject><subject>Electricity generation</subject><subject>Electrode materials</subject><subject>exopolysaccharid</subject><subject>extracellular electron transfer</subject><subject>Fuel technology</subject><subject>Low voltage</subject><subject>Maximum power density</subject><subject>Mesophase</subject><subject>microbial fuel cells</subject><subject>Microorganisms</subject><subject>Nanotechnology</subject><subject>Organic chemistry</subject><subject>Start up</subject><subject>Toxicity</subject><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkL1vwjAQxa2qlYooa2dLnUPPdmI7Y4UCRaIfA50tJzm3QeBQJwjx39dARcdOd9L93nunR8g9gzED4I_oexxzYBpAKHVFBpzlaZLyXF5fdq1vyajrVgDAIBMZiAHxyy-k8ygOtuqb1tMS-z2ip8Uaqz40VfOJvqPW13RiQxmBV-vbflcinbYBu_50usD9gc7QR7OT1zsG14aN9RXSxtOX6eSO3Di77nD0O4fkY1osJ8_J4m02nzwtkkpkUiVWAlglZF25XLJUaMvLMqul066UtRPaoWNaWKyFzRTLEHkqUblapFIxZcWQPJx9t6H93sU3zardBR8jDWda8hRiTKTGZ6oKbdcFdGYbmo0NB8PAHGs1x1rNpdYoyM-CfbPGwz-0KV6XxZ_2BxBRfPo</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>Zhao, Na</creator><creator>Ma, Zhaokun</creator><creator>Song, Huaihe</creator><creator>Xie, Yangen</creator><creator>Wang, Dingling</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201902</creationdate><title>The Interaction between Electricigens and Carbon Nanotube Forest and Electricity Generation Performance in MFC</title><author>Zhao, Na ; Ma, Zhaokun ; Song, Huaihe ; Xie, Yangen ; Wang, Dingling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3567-a600a736dcf961438a2bb5d6f8fb6df38fef183aed3a5715ee246e7fd346717a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anodes</topic><topic>Biochemical fuel cells</topic><topic>Carbon</topic><topic>Carbon fibers</topic><topic>carbon nanotube forest</topic><topic>Carbon nanotubes</topic><topic>Chemical vapor deposition</topic><topic>Electricity</topic><topic>Electricity generation</topic><topic>Electrode materials</topic><topic>exopolysaccharid</topic><topic>extracellular electron transfer</topic><topic>Fuel technology</topic><topic>Low voltage</topic><topic>Maximum power density</topic><topic>Mesophase</topic><topic>microbial fuel cells</topic><topic>Microorganisms</topic><topic>Nanotechnology</topic><topic>Organic chemistry</topic><topic>Start up</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Na</creatorcontrib><creatorcontrib>Ma, Zhaokun</creatorcontrib><creatorcontrib>Song, Huaihe</creatorcontrib><creatorcontrib>Xie, Yangen</creatorcontrib><creatorcontrib>Wang, Dingling</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Na</au><au>Ma, Zhaokun</au><au>Song, Huaihe</au><au>Xie, Yangen</au><au>Wang, Dingling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Interaction between Electricigens and Carbon Nanotube Forest and Electricity Generation Performance in MFC</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><date>2019-02</date><risdate>2019</risdate><volume>7</volume><issue>2</issue><spage>188</spage><epage>192</epage><pages>188-192</pages><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>Carbon nanotube forest (CNTFs) is grown vertically on the surface of highly conductive mesophase pitch carbon fibers (Pitch‐CFs) in the chemical vapor deposition method. Then the CNTFs‐modified CFs (CNTFs‐Pitch‐CF) as an anode material is assembled into the single chamber microbial fuel cells (MFCs). Interaction between electricigens and carbon nanotubes (CNTs) is investigated. The toxicity of the CNTs can make electricigens expend energy or electrons to produce exopolysaccharid (EPS) as much as possible. Accordingly, this leads to low voltage and the long start up time for the CNTFs‐Pitch‐CF anode in the early period. When the activity of electricigens with the EPS reaches a stable state over time, the output voltage rises rapidly and the maximum power density of the CNTFs‐Pitch‐CF‐equiped MFC is increased to 1112 mW/m2, which is approximately 1.55‐fold higher than Pitch‐CF‐equiped MFC. And the CNTFs‐Pitch‐CF‐equiped MFC can keep high electricity generation performance of MFCs for a long time, which is 75 % larger than the Pitch‐CF‐equiped MFC. This method of the CNTFs modifying the CFs provides a new idea for increasing the electricity generation performance of the MFCs.
Mechanism analysis The schematic is used to explain the interaction between the carbon nanotubes(CNTs) and electricigens. CNTs can stimulate the epidermis of elctricigens and cause biological response, making electricigens expend energy or electrons to produce exopolysaccharid (EPS). When EPS is sufficient to counteract the stimulation or toxicity of CNTs, the rough surface and forest structure of CNTs modified anode can greatly decrease the internal resistance and promote the extracellular electron transfer.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ente.201800377</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2194-4288 |
ispartof | Energy technology (Weinheim, Germany), 2019-02, Vol.7 (2), p.188-192 |
issn | 2194-4288 2194-4296 |
language | eng |
recordid | cdi_proquest_journals_2186240567 |
source | Access via Wiley Online Library |
subjects | Anodes Biochemical fuel cells Carbon Carbon fibers carbon nanotube forest Carbon nanotubes Chemical vapor deposition Electricity Electricity generation Electrode materials exopolysaccharid extracellular electron transfer Fuel technology Low voltage Maximum power density Mesophase microbial fuel cells Microorganisms Nanotechnology Organic chemistry Start up Toxicity |
title | The Interaction between Electricigens and Carbon Nanotube Forest and Electricity Generation Performance in MFC |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A10%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Interaction%20between%20Electricigens%20and%20Carbon%20Nanotube%20Forest%20and%20Electricity%20Generation%20Performance%20in%20MFC&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Zhao,%20Na&rft.date=2019-02&rft.volume=7&rft.issue=2&rft.spage=188&rft.epage=192&rft.pages=188-192&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.201800377&rft_dat=%3Cproquest_cross%3E2186240567%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186240567&rft_id=info:pmid/&rfr_iscdi=true |