The Connectivity Number of an Arithmetic Graph

The arithmetic graph Vn is defined as a graph with its vertex set is the set consists of the divisors of n (excluding 1) where n is a positive integer and ... where p'is are distinct primes and ai's ≥ 1 and two distinct vertices a, b which are not of the same parity are adjacent in this gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of mathematical combinatorics 2018-11, p.132-136
Hauptverfasser: Jenitha, L Mary, Sujitha, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue
container_start_page 132
container_title International journal of mathematical combinatorics
container_volume
creator Jenitha, L Mary
Sujitha, S
description The arithmetic graph Vn is defined as a graph with its vertex set is the set consists of the divisors of n (excluding 1) where n is a positive integer and ... where p'is are distinct primes and ai's ≥ 1 and two distinct vertices a, b which are not of the same parity are adjacent in this graph if (a, b) = pi, for some i, 1 ≤ i ≤ r. In this paper, we study some results related to the connectivity κ of an arithmetic graph. It is also shown that, the edge connectivity κ and the connectivity κ are equal in arithmetic graph Vn.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2186207981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2186207981</sourcerecordid><originalsourceid>FETCH-proquest_journals_21862079813</originalsourceid><addsrcrecordid>eNpjYuA0tDQ21zU0MDFngbNNTTkYuIqLswwMTC2NTSw4GfRCMlIVnPPz8lKTSzLLMksqFfxKc5NSixTy0xQS8xQcizJLMnJTSzKTFdyLEgsyeBhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjQwszIwNzSwtCYOFUAqHkzQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186207981</pqid></control><display><type>article</type><title>The Connectivity Number of an Arithmetic Graph</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jenitha, L Mary ; Sujitha, S</creator><creatorcontrib>Jenitha, L Mary ; Sujitha, S</creatorcontrib><description>The arithmetic graph Vn is defined as a graph with its vertex set is the set consists of the divisors of n (excluding 1) where n is a positive integer and ... where p'is are distinct primes and ai's ≥ 1 and two distinct vertices a, b which are not of the same parity are adjacent in this graph if (a, b) = pi, for some i, 1 ≤ i ≤ r. In this paper, we study some results related to the connectivity κ of an arithmetic graph. It is also shown that, the edge connectivity κ and the connectivity κ are equal in arithmetic graph Vn.</description><identifier>ISSN: 1937-1055</identifier><identifier>EISSN: 1937-1047</identifier><language>eng</language><publisher>Gallup: Science Seeking - distributor</publisher><subject>Apexes ; Arithmetic ; Graphs ; Mathematics</subject><ispartof>International journal of mathematical combinatorics, 2018-11, p.132-136</ispartof><rights>2018. This work is published under NOCC (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Jenitha, L Mary</creatorcontrib><creatorcontrib>Sujitha, S</creatorcontrib><title>The Connectivity Number of an Arithmetic Graph</title><title>International journal of mathematical combinatorics</title><description>The arithmetic graph Vn is defined as a graph with its vertex set is the set consists of the divisors of n (excluding 1) where n is a positive integer and ... where p'is are distinct primes and ai's ≥ 1 and two distinct vertices a, b which are not of the same parity are adjacent in this graph if (a, b) = pi, for some i, 1 ≤ i ≤ r. In this paper, we study some results related to the connectivity κ of an arithmetic graph. It is also shown that, the edge connectivity κ and the connectivity κ are equal in arithmetic graph Vn.</description><subject>Apexes</subject><subject>Arithmetic</subject><subject>Graphs</subject><subject>Mathematics</subject><issn>1937-1055</issn><issn>1937-1047</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpjYuA0tDQ21zU0MDFngbNNTTkYuIqLswwMTC2NTSw4GfRCMlIVnPPz8lKTSzLLMksqFfxKc5NSixTy0xQS8xQcizJLMnJTSzKTFdyLEgsyeBhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjQwszIwNzSwtCYOFUAqHkzQA</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Jenitha, L Mary</creator><creator>Sujitha, S</creator><general>Science Seeking - distributor</general><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20181101</creationdate><title>The Connectivity Number of an Arithmetic Graph</title><author>Jenitha, L Mary ; Sujitha, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21862079813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Apexes</topic><topic>Arithmetic</topic><topic>Graphs</topic><topic>Mathematics</topic><toplevel>online_resources</toplevel><creatorcontrib>Jenitha, L Mary</creatorcontrib><creatorcontrib>Sujitha, S</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of mathematical combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jenitha, L Mary</au><au>Sujitha, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Connectivity Number of an Arithmetic Graph</atitle><jtitle>International journal of mathematical combinatorics</jtitle><date>2018-11-01</date><risdate>2018</risdate><spage>132</spage><epage>136</epage><pages>132-136</pages><issn>1937-1055</issn><eissn>1937-1047</eissn><abstract>The arithmetic graph Vn is defined as a graph with its vertex set is the set consists of the divisors of n (excluding 1) where n is a positive integer and ... where p'is are distinct primes and ai's ≥ 1 and two distinct vertices a, b which are not of the same parity are adjacent in this graph if (a, b) = pi, for some i, 1 ≤ i ≤ r. In this paper, we study some results related to the connectivity κ of an arithmetic graph. It is also shown that, the edge connectivity κ and the connectivity κ are equal in arithmetic graph Vn.</abstract><cop>Gallup</cop><pub>Science Seeking - distributor</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1937-1055
ispartof International journal of mathematical combinatorics, 2018-11, p.132-136
issn 1937-1055
1937-1047
language eng
recordid cdi_proquest_journals_2186207981
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Apexes
Arithmetic
Graphs
Mathematics
title The Connectivity Number of an Arithmetic Graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A55%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Connectivity%20Number%20of%20an%20Arithmetic%20Graph&rft.jtitle=International%20journal%20of%20mathematical%20combinatorics&rft.au=Jenitha,%20L%20Mary&rft.date=2018-11-01&rft.spage=132&rft.epage=136&rft.pages=132-136&rft.issn=1937-1055&rft.eissn=1937-1047&rft_id=info:doi/&rft_dat=%3Cproquest%3E2186207981%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186207981&rft_id=info:pmid/&rfr_iscdi=true