On the analysis and application of an ion size-modified Poisson–Boltzmann equation
In this paper, an improved electrostatic free energy functional is presented as an extension of the one proposed in Xie and Li (2015) to reflect ion size effects. It is then shown to have a unique minimizer, resulting in the solution existence and uniqueness of one commonly-used ion size-modified Po...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis: real world applications 2019-06, Vol.47, p.188-203 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 203 |
---|---|
container_issue | |
container_start_page | 188 |
container_title | Nonlinear analysis: real world applications |
container_volume | 47 |
creator | Li, Jiao Ying, Jinyong Xie, Dexuan |
description | In this paper, an improved electrostatic free energy functional is presented as an extension of the one proposed in Xie and Li (2015) to reflect ion size effects. It is then shown to have a unique minimizer, resulting in the solution existence and uniqueness of one commonly-used ion size-modified Poisson–Boltzmann equation (SMPBE). As for applications, SMPBE is used to calculate the electrostatic solvation free energy with the new derived well-defined formula and simulate an electric double layer numerically to demonstrate the advantage of SMPBE over the classic Poisson–Boltzmann equation in the prediction of ionic concentrations. |
doi_str_mv | 10.1016/j.nonrwa.2018.10.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2186127622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1468121818311003</els_id><sourcerecordid>2186127622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-a6dba077610fc250fddaf7b5c202e1d237992c76861561dc8505931c46e688573</originalsourceid><addsrcrecordid>eNp9kE1OwzAUhCMEEqVwAxaRWCf4OY3tbJCg4k-qVBZlbbm2IxyldmqnoHbFHbghJ8EhrFm90WjmSfMlySWgHBCQ6ya3zvoPkWMELFo5AjhKJsAoy0oK1XHUM8IywMBOk7MQGoSAQgGTZLW0af-mU2FFuw8mRKFS0XWtkaI3zqaujlY6qGAOOts4ZWqjVfriTAjOfn9-3bm2P2yEtane7n5L58lJLdqgL_7uNHl9uF_Nn7LF8vF5frvIZMFQnwmi1gJRSgDVEpeoVkrUdF1KjLAGhQtaVVhSwgiUBJRkJSqrAuSMaMJYSYtpcjX-7bzb7nToeeN2Pi4JPC4lgCnBOKZmY0p6F4LXNe-82Qi_54D4wI83fOTHB36DG_nF2s1Y03HBu9GeB2m0lVoZr2XPlTP_P_gBDmt7ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186127622</pqid></control><display><type>article</type><title>On the analysis and application of an ion size-modified Poisson–Boltzmann equation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, Jiao ; Ying, Jinyong ; Xie, Dexuan</creator><creatorcontrib>Li, Jiao ; Ying, Jinyong ; Xie, Dexuan</creatorcontrib><description>In this paper, an improved electrostatic free energy functional is presented as an extension of the one proposed in Xie and Li (2015) to reflect ion size effects. It is then shown to have a unique minimizer, resulting in the solution existence and uniqueness of one commonly-used ion size-modified Poisson–Boltzmann equation (SMPBE). As for applications, SMPBE is used to calculate the electrostatic solvation free energy with the new derived well-defined formula and simulate an electric double layer numerically to demonstrate the advantage of SMPBE over the classic Poisson–Boltzmann equation in the prediction of ionic concentrations.</description><identifier>ISSN: 1468-1218</identifier><identifier>EISSN: 1878-5719</identifier><identifier>DOI: 10.1016/j.nonrwa.2018.10.011</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Boltzmann transport equation ; Computer simulation ; Electric double layer ; Electrostatic free energy ; Free energy ; Mathematical analysis ; PDE-constrained variational methods ; Size effects ; Size-modified Poisson–Boltzmann equation ; Solvation</subject><ispartof>Nonlinear analysis: real world applications, 2019-06, Vol.47, p.188-203</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-a6dba077610fc250fddaf7b5c202e1d237992c76861561dc8505931c46e688573</citedby><cites>FETCH-LOGICAL-c380t-a6dba077610fc250fddaf7b5c202e1d237992c76861561dc8505931c46e688573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1468121818311003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Li, Jiao</creatorcontrib><creatorcontrib>Ying, Jinyong</creatorcontrib><creatorcontrib>Xie, Dexuan</creatorcontrib><title>On the analysis and application of an ion size-modified Poisson–Boltzmann equation</title><title>Nonlinear analysis: real world applications</title><description>In this paper, an improved electrostatic free energy functional is presented as an extension of the one proposed in Xie and Li (2015) to reflect ion size effects. It is then shown to have a unique minimizer, resulting in the solution existence and uniqueness of one commonly-used ion size-modified Poisson–Boltzmann equation (SMPBE). As for applications, SMPBE is used to calculate the electrostatic solvation free energy with the new derived well-defined formula and simulate an electric double layer numerically to demonstrate the advantage of SMPBE over the classic Poisson–Boltzmann equation in the prediction of ionic concentrations.</description><subject>Boltzmann transport equation</subject><subject>Computer simulation</subject><subject>Electric double layer</subject><subject>Electrostatic free energy</subject><subject>Free energy</subject><subject>Mathematical analysis</subject><subject>PDE-constrained variational methods</subject><subject>Size effects</subject><subject>Size-modified Poisson–Boltzmann equation</subject><subject>Solvation</subject><issn>1468-1218</issn><issn>1878-5719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAUhCMEEqVwAxaRWCf4OY3tbJCg4k-qVBZlbbm2IxyldmqnoHbFHbghJ8EhrFm90WjmSfMlySWgHBCQ6ya3zvoPkWMELFo5AjhKJsAoy0oK1XHUM8IywMBOk7MQGoSAQgGTZLW0af-mU2FFuw8mRKFS0XWtkaI3zqaujlY6qGAOOts4ZWqjVfriTAjOfn9-3bm2P2yEtane7n5L58lJLdqgL_7uNHl9uF_Nn7LF8vF5frvIZMFQnwmi1gJRSgDVEpeoVkrUdF1KjLAGhQtaVVhSwgiUBJRkJSqrAuSMaMJYSYtpcjX-7bzb7nToeeN2Pi4JPC4lgCnBOKZmY0p6F4LXNe-82Qi_54D4wI83fOTHB36DG_nF2s1Y03HBu9GeB2m0lVoZr2XPlTP_P_gBDmt7ng</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Li, Jiao</creator><creator>Ying, Jinyong</creator><creator>Xie, Dexuan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201906</creationdate><title>On the analysis and application of an ion size-modified Poisson–Boltzmann equation</title><author>Li, Jiao ; Ying, Jinyong ; Xie, Dexuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-a6dba077610fc250fddaf7b5c202e1d237992c76861561dc8505931c46e688573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boltzmann transport equation</topic><topic>Computer simulation</topic><topic>Electric double layer</topic><topic>Electrostatic free energy</topic><topic>Free energy</topic><topic>Mathematical analysis</topic><topic>PDE-constrained variational methods</topic><topic>Size effects</topic><topic>Size-modified Poisson–Boltzmann equation</topic><topic>Solvation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jiao</creatorcontrib><creatorcontrib>Ying, Jinyong</creatorcontrib><creatorcontrib>Xie, Dexuan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis: real world applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jiao</au><au>Ying, Jinyong</au><au>Xie, Dexuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the analysis and application of an ion size-modified Poisson–Boltzmann equation</atitle><jtitle>Nonlinear analysis: real world applications</jtitle><date>2019-06</date><risdate>2019</risdate><volume>47</volume><spage>188</spage><epage>203</epage><pages>188-203</pages><issn>1468-1218</issn><eissn>1878-5719</eissn><abstract>In this paper, an improved electrostatic free energy functional is presented as an extension of the one proposed in Xie and Li (2015) to reflect ion size effects. It is then shown to have a unique minimizer, resulting in the solution existence and uniqueness of one commonly-used ion size-modified Poisson–Boltzmann equation (SMPBE). As for applications, SMPBE is used to calculate the electrostatic solvation free energy with the new derived well-defined formula and simulate an electric double layer numerically to demonstrate the advantage of SMPBE over the classic Poisson–Boltzmann equation in the prediction of ionic concentrations.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.nonrwa.2018.10.011</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1468-1218 |
ispartof | Nonlinear analysis: real world applications, 2019-06, Vol.47, p.188-203 |
issn | 1468-1218 1878-5719 |
language | eng |
recordid | cdi_proquest_journals_2186127622 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Boltzmann transport equation Computer simulation Electric double layer Electrostatic free energy Free energy Mathematical analysis PDE-constrained variational methods Size effects Size-modified Poisson–Boltzmann equation Solvation |
title | On the analysis and application of an ion size-modified Poisson–Boltzmann equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A16%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20analysis%20and%20application%20of%20an%20ion%20size-modified%20Poisson%E2%80%93Boltzmann%20equation&rft.jtitle=Nonlinear%20analysis:%20real%20world%20applications&rft.au=Li,%20Jiao&rft.date=2019-06&rft.volume=47&rft.spage=188&rft.epage=203&rft.pages=188-203&rft.issn=1468-1218&rft.eissn=1878-5719&rft_id=info:doi/10.1016/j.nonrwa.2018.10.011&rft_dat=%3Cproquest_cross%3E2186127622%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186127622&rft_id=info:pmid/&rft_els_id=S1468121818311003&rfr_iscdi=true |