On the analysis and application of an ion size-modified Poisson–Boltzmann equation

In this paper, an improved electrostatic free energy functional is presented as an extension of the one proposed in Xie and Li (2015) to reflect ion size effects. It is then shown to have a unique minimizer, resulting in the solution existence and uniqueness of one commonly-used ion size-modified Po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis: real world applications 2019-06, Vol.47, p.188-203
Hauptverfasser: Li, Jiao, Ying, Jinyong, Xie, Dexuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 203
container_issue
container_start_page 188
container_title Nonlinear analysis: real world applications
container_volume 47
creator Li, Jiao
Ying, Jinyong
Xie, Dexuan
description In this paper, an improved electrostatic free energy functional is presented as an extension of the one proposed in Xie and Li (2015) to reflect ion size effects. It is then shown to have a unique minimizer, resulting in the solution existence and uniqueness of one commonly-used ion size-modified Poisson–Boltzmann equation (SMPBE). As for applications, SMPBE is used to calculate the electrostatic solvation free energy with the new derived well-defined formula and simulate an electric double layer numerically to demonstrate the advantage of SMPBE over the classic Poisson–Boltzmann equation in the prediction of ionic concentrations.
doi_str_mv 10.1016/j.nonrwa.2018.10.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2186127622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1468121818311003</els_id><sourcerecordid>2186127622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-a6dba077610fc250fddaf7b5c202e1d237992c76861561dc8505931c46e688573</originalsourceid><addsrcrecordid>eNp9kE1OwzAUhCMEEqVwAxaRWCf4OY3tbJCg4k-qVBZlbbm2IxyldmqnoHbFHbghJ8EhrFm90WjmSfMlySWgHBCQ6ya3zvoPkWMELFo5AjhKJsAoy0oK1XHUM8IywMBOk7MQGoSAQgGTZLW0af-mU2FFuw8mRKFS0XWtkaI3zqaujlY6qGAOOts4ZWqjVfriTAjOfn9-3bm2P2yEtane7n5L58lJLdqgL_7uNHl9uF_Nn7LF8vF5frvIZMFQnwmi1gJRSgDVEpeoVkrUdF1KjLAGhQtaVVhSwgiUBJRkJSqrAuSMaMJYSYtpcjX-7bzb7nToeeN2Pi4JPC4lgCnBOKZmY0p6F4LXNe-82Qi_54D4wI83fOTHB36DG_nF2s1Y03HBu9GeB2m0lVoZr2XPlTP_P_gBDmt7ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2186127622</pqid></control><display><type>article</type><title>On the analysis and application of an ion size-modified Poisson–Boltzmann equation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Li, Jiao ; Ying, Jinyong ; Xie, Dexuan</creator><creatorcontrib>Li, Jiao ; Ying, Jinyong ; Xie, Dexuan</creatorcontrib><description>In this paper, an improved electrostatic free energy functional is presented as an extension of the one proposed in Xie and Li (2015) to reflect ion size effects. It is then shown to have a unique minimizer, resulting in the solution existence and uniqueness of one commonly-used ion size-modified Poisson–Boltzmann equation (SMPBE). As for applications, SMPBE is used to calculate the electrostatic solvation free energy with the new derived well-defined formula and simulate an electric double layer numerically to demonstrate the advantage of SMPBE over the classic Poisson–Boltzmann equation in the prediction of ionic concentrations.</description><identifier>ISSN: 1468-1218</identifier><identifier>EISSN: 1878-5719</identifier><identifier>DOI: 10.1016/j.nonrwa.2018.10.011</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Boltzmann transport equation ; Computer simulation ; Electric double layer ; Electrostatic free energy ; Free energy ; Mathematical analysis ; PDE-constrained variational methods ; Size effects ; Size-modified Poisson–Boltzmann equation ; Solvation</subject><ispartof>Nonlinear analysis: real world applications, 2019-06, Vol.47, p.188-203</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-a6dba077610fc250fddaf7b5c202e1d237992c76861561dc8505931c46e688573</citedby><cites>FETCH-LOGICAL-c380t-a6dba077610fc250fddaf7b5c202e1d237992c76861561dc8505931c46e688573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1468121818311003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Li, Jiao</creatorcontrib><creatorcontrib>Ying, Jinyong</creatorcontrib><creatorcontrib>Xie, Dexuan</creatorcontrib><title>On the analysis and application of an ion size-modified Poisson–Boltzmann equation</title><title>Nonlinear analysis: real world applications</title><description>In this paper, an improved electrostatic free energy functional is presented as an extension of the one proposed in Xie and Li (2015) to reflect ion size effects. It is then shown to have a unique minimizer, resulting in the solution existence and uniqueness of one commonly-used ion size-modified Poisson–Boltzmann equation (SMPBE). As for applications, SMPBE is used to calculate the electrostatic solvation free energy with the new derived well-defined formula and simulate an electric double layer numerically to demonstrate the advantage of SMPBE over the classic Poisson–Boltzmann equation in the prediction of ionic concentrations.</description><subject>Boltzmann transport equation</subject><subject>Computer simulation</subject><subject>Electric double layer</subject><subject>Electrostatic free energy</subject><subject>Free energy</subject><subject>Mathematical analysis</subject><subject>PDE-constrained variational methods</subject><subject>Size effects</subject><subject>Size-modified Poisson–Boltzmann equation</subject><subject>Solvation</subject><issn>1468-1218</issn><issn>1878-5719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAUhCMEEqVwAxaRWCf4OY3tbJCg4k-qVBZlbbm2IxyldmqnoHbFHbghJ8EhrFm90WjmSfMlySWgHBCQ6ya3zvoPkWMELFo5AjhKJsAoy0oK1XHUM8IywMBOk7MQGoSAQgGTZLW0af-mU2FFuw8mRKFS0XWtkaI3zqaujlY6qGAOOts4ZWqjVfriTAjOfn9-3bm2P2yEtane7n5L58lJLdqgL_7uNHl9uF_Nn7LF8vF5frvIZMFQnwmi1gJRSgDVEpeoVkrUdF1KjLAGhQtaVVhSwgiUBJRkJSqrAuSMaMJYSYtpcjX-7bzb7nToeeN2Pi4JPC4lgCnBOKZmY0p6F4LXNe-82Qi_54D4wI83fOTHB36DG_nF2s1Y03HBu9GeB2m0lVoZr2XPlTP_P_gBDmt7ng</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Li, Jiao</creator><creator>Ying, Jinyong</creator><creator>Xie, Dexuan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201906</creationdate><title>On the analysis and application of an ion size-modified Poisson–Boltzmann equation</title><author>Li, Jiao ; Ying, Jinyong ; Xie, Dexuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-a6dba077610fc250fddaf7b5c202e1d237992c76861561dc8505931c46e688573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boltzmann transport equation</topic><topic>Computer simulation</topic><topic>Electric double layer</topic><topic>Electrostatic free energy</topic><topic>Free energy</topic><topic>Mathematical analysis</topic><topic>PDE-constrained variational methods</topic><topic>Size effects</topic><topic>Size-modified Poisson–Boltzmann equation</topic><topic>Solvation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jiao</creatorcontrib><creatorcontrib>Ying, Jinyong</creatorcontrib><creatorcontrib>Xie, Dexuan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis: real world applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jiao</au><au>Ying, Jinyong</au><au>Xie, Dexuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the analysis and application of an ion size-modified Poisson–Boltzmann equation</atitle><jtitle>Nonlinear analysis: real world applications</jtitle><date>2019-06</date><risdate>2019</risdate><volume>47</volume><spage>188</spage><epage>203</epage><pages>188-203</pages><issn>1468-1218</issn><eissn>1878-5719</eissn><abstract>In this paper, an improved electrostatic free energy functional is presented as an extension of the one proposed in Xie and Li (2015) to reflect ion size effects. It is then shown to have a unique minimizer, resulting in the solution existence and uniqueness of one commonly-used ion size-modified Poisson–Boltzmann equation (SMPBE). As for applications, SMPBE is used to calculate the electrostatic solvation free energy with the new derived well-defined formula and simulate an electric double layer numerically to demonstrate the advantage of SMPBE over the classic Poisson–Boltzmann equation in the prediction of ionic concentrations.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.nonrwa.2018.10.011</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1468-1218
ispartof Nonlinear analysis: real world applications, 2019-06, Vol.47, p.188-203
issn 1468-1218
1878-5719
language eng
recordid cdi_proquest_journals_2186127622
source Elsevier ScienceDirect Journals Complete
subjects Boltzmann transport equation
Computer simulation
Electric double layer
Electrostatic free energy
Free energy
Mathematical analysis
PDE-constrained variational methods
Size effects
Size-modified Poisson–Boltzmann equation
Solvation
title On the analysis and application of an ion size-modified Poisson–Boltzmann equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A16%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20analysis%20and%20application%20of%20an%20ion%20size-modified%20Poisson%E2%80%93Boltzmann%20equation&rft.jtitle=Nonlinear%20analysis:%20real%20world%20applications&rft.au=Li,%20Jiao&rft.date=2019-06&rft.volume=47&rft.spage=188&rft.epage=203&rft.pages=188-203&rft.issn=1468-1218&rft.eissn=1878-5719&rft_id=info:doi/10.1016/j.nonrwa.2018.10.011&rft_dat=%3Cproquest_cross%3E2186127622%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2186127622&rft_id=info:pmid/&rft_els_id=S1468121818311003&rfr_iscdi=true