Lithium ion transport through nonaqueous perfluoroionomeric membranes

The transport properties of lithiated perfluorinated ionomers imbibed with nonaqueous solvents and solvent mixtures were studied. Polymeric ion‐exchange membranes have potential use in the next generation single‐ion secondary lithium polymer batteries, where the lithiated form of the membrane is use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer engineering and science 2002-07, Vol.42 (7), p.1469-1480
Hauptverfasser: Sachan, Sunil, Ray, Cameron A., Perusich, Stephen A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1480
container_issue 7
container_start_page 1469
container_title Polymer engineering and science
container_volume 42
creator Sachan, Sunil
Ray, Cameron A.
Perusich, Stephen A.
description The transport properties of lithiated perfluorinated ionomers imbibed with nonaqueous solvents and solvent mixtures were studied. Polymeric ion‐exchange membranes have potential use in the next generation single‐ion secondary lithium polymer batteries, where the lithiated form of the membrane is used as a polymer electrolyte. The novelty of the approach for lithium battery applications lies in the advantage offered by a transference number of unity, no additional salt (e.g., LiPF6) is needed, and the excellent physical and chemical stability of the fluoropolymers. Ion‐exchange membranes were converted to the Li+ salt form and analyzed for total conversion using FT‐IR. Nonaqueous solvents and solvent mixtures were imbibed into the membranes in a glove box, and the uptake was measured over time. A four‐point probe was used to determine the ionic conductivity based on impedance measurements performed over a frequency range of 10 to 35,000 Hz. Conductivities exceeding 10−4 S/cm with transference numbers of unity were achieved making these ionomeric membranes potentially useful in rechargeable lithium polymer batteries.
doi_str_mv 10.1002/pen.11044
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_218609345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A90307961</galeid><sourcerecordid>A90307961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4704-dc5bdf842c5b60fdcceab046bb813d4ebf2078f292f03292ae322dd4d7a051173</originalsourceid><addsrcrecordid>eNp1kV1LHDEYhYNU6FZ70X8wCIUKHc3XzGQuRdYPXLRUSy9DJpPsxs4kYzKD-u_76q4VwZKLF8JzTs7Ji9AXgg8IxvRwMP6AEMz5FpqRgouclox_QDOMGc2ZEOIj-pTSLQaWFfUMzRduXLmpz1zw2RiVT0OIYzauYpiWq8wHr-4mE6aUDSbabgoxABl6E53OetM3IDFpF21b1SXzeTN30K-T-c3xWb64Oj0_PlrkmleY560umtYKTmGW2LZaG9VgXjaNIKzlprEUV8LSmlqIW1NlGKVty9tK4YKQiu2gvbXvEAPESqO8DVP08KSkRJS4ZrwA6PsaWqrOSOdtgF56abyJqgveWAfXRzVmuKpLAnj-Dg6nNb3T7_Hf3vCAjOZhXKopJXl-_fMNur9GdQwpRWPlEF2v4qMkWD6tS8K65PO6gP26qaaSVp2Ff9UuvQqYYFCRAXe45u4h1uP_DeWP-eWL86agSxD0n0LFP7KsWFXI35ensibi7IZcXEvG_gLEaLIm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218609345</pqid></control><display><type>article</type><title>Lithium ion transport through nonaqueous perfluoroionomeric membranes</title><source>Access via Wiley Online Library</source><creator>Sachan, Sunil ; Ray, Cameron A. ; Perusich, Stephen A.</creator><creatorcontrib>Sachan, Sunil ; Ray, Cameron A. ; Perusich, Stephen A.</creatorcontrib><description>The transport properties of lithiated perfluorinated ionomers imbibed with nonaqueous solvents and solvent mixtures were studied. Polymeric ion‐exchange membranes have potential use in the next generation single‐ion secondary lithium polymer batteries, where the lithiated form of the membrane is used as a polymer electrolyte. The novelty of the approach for lithium battery applications lies in the advantage offered by a transference number of unity, no additional salt (e.g., LiPF6) is needed, and the excellent physical and chemical stability of the fluoropolymers. Ion‐exchange membranes were converted to the Li+ salt form and analyzed for total conversion using FT‐IR. Nonaqueous solvents and solvent mixtures were imbibed into the membranes in a glove box, and the uptake was measured over time. A four‐point probe was used to determine the ionic conductivity based on impedance measurements performed over a frequency range of 10 to 35,000 Hz. Conductivities exceeding 10−4 S/cm with transference numbers of unity were achieved making these ionomeric membranes potentially useful in rechargeable lithium polymer batteries.</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.11044</identifier><identifier>CODEN: PYESAZ</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Evaluation ; Exact sciences and technology ; Exchange resins and membranes ; Forms of application and semi-finished materials ; Ion-permeable membranes ; Lithium cells ; Materials ; Membranes (Technology) ; Polymer industry, paints, wood ; Polymers ; Properties ; Technology of polymers</subject><ispartof>Polymer engineering and science, 2002-07, Vol.42 (7), p.1469-1480</ispartof><rights>Copyright © 2002 Society of Plastics Engineers</rights><rights>2002 INIST-CNRS</rights><rights>COPYRIGHT 2002 Society of Plastics Engineers, Inc.</rights><rights>Copyright Society of Plastics Engineers Jul 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4704-dc5bdf842c5b60fdcceab046bb813d4ebf2078f292f03292ae322dd4d7a051173</citedby><cites>FETCH-LOGICAL-c4704-dc5bdf842c5b60fdcceab046bb813d4ebf2078f292f03292ae322dd4d7a051173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.11044$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.11044$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13832183$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sachan, Sunil</creatorcontrib><creatorcontrib>Ray, Cameron A.</creatorcontrib><creatorcontrib>Perusich, Stephen A.</creatorcontrib><title>Lithium ion transport through nonaqueous perfluoroionomeric membranes</title><title>Polymer engineering and science</title><addtitle>Polym Eng Sci</addtitle><description>The transport properties of lithiated perfluorinated ionomers imbibed with nonaqueous solvents and solvent mixtures were studied. Polymeric ion‐exchange membranes have potential use in the next generation single‐ion secondary lithium polymer batteries, where the lithiated form of the membrane is used as a polymer electrolyte. The novelty of the approach for lithium battery applications lies in the advantage offered by a transference number of unity, no additional salt (e.g., LiPF6) is needed, and the excellent physical and chemical stability of the fluoropolymers. Ion‐exchange membranes were converted to the Li+ salt form and analyzed for total conversion using FT‐IR. Nonaqueous solvents and solvent mixtures were imbibed into the membranes in a glove box, and the uptake was measured over time. A four‐point probe was used to determine the ionic conductivity based on impedance measurements performed over a frequency range of 10 to 35,000 Hz. Conductivities exceeding 10−4 S/cm with transference numbers of unity were achieved making these ionomeric membranes potentially useful in rechargeable lithium polymer batteries.</description><subject>Applied sciences</subject><subject>Evaluation</subject><subject>Exact sciences and technology</subject><subject>Exchange resins and membranes</subject><subject>Forms of application and semi-finished materials</subject><subject>Ion-permeable membranes</subject><subject>Lithium cells</subject><subject>Materials</subject><subject>Membranes (Technology)</subject><subject>Polymer industry, paints, wood</subject><subject>Polymers</subject><subject>Properties</subject><subject>Technology of polymers</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kV1LHDEYhYNU6FZ70X8wCIUKHc3XzGQuRdYPXLRUSy9DJpPsxs4kYzKD-u_76q4VwZKLF8JzTs7Ji9AXgg8IxvRwMP6AEMz5FpqRgouclox_QDOMGc2ZEOIj-pTSLQaWFfUMzRduXLmpz1zw2RiVT0OIYzauYpiWq8wHr-4mE6aUDSbabgoxABl6E53OetM3IDFpF21b1SXzeTN30K-T-c3xWb64Oj0_PlrkmleY560umtYKTmGW2LZaG9VgXjaNIKzlprEUV8LSmlqIW1NlGKVty9tK4YKQiu2gvbXvEAPESqO8DVP08KSkRJS4ZrwA6PsaWqrOSOdtgF56abyJqgveWAfXRzVmuKpLAnj-Dg6nNb3T7_Hf3vCAjOZhXKopJXl-_fMNur9GdQwpRWPlEF2v4qMkWD6tS8K65PO6gP26qaaSVp2Ff9UuvQqYYFCRAXe45u4h1uP_DeWP-eWL86agSxD0n0LFP7KsWFXI35ensibi7IZcXEvG_gLEaLIm</recordid><startdate>200207</startdate><enddate>200207</enddate><creator>Sachan, Sunil</creator><creator>Ray, Cameron A.</creator><creator>Perusich, Stephen A.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><general>Society of Plastics Engineers, Inc</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>200207</creationdate><title>Lithium ion transport through nonaqueous perfluoroionomeric membranes</title><author>Sachan, Sunil ; Ray, Cameron A. ; Perusich, Stephen A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4704-dc5bdf842c5b60fdcceab046bb813d4ebf2078f292f03292ae322dd4d7a051173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Evaluation</topic><topic>Exact sciences and technology</topic><topic>Exchange resins and membranes</topic><topic>Forms of application and semi-finished materials</topic><topic>Ion-permeable membranes</topic><topic>Lithium cells</topic><topic>Materials</topic><topic>Membranes (Technology)</topic><topic>Polymer industry, paints, wood</topic><topic>Polymers</topic><topic>Properties</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sachan, Sunil</creatorcontrib><creatorcontrib>Ray, Cameron A.</creatorcontrib><creatorcontrib>Perusich, Stephen A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sachan, Sunil</au><au>Ray, Cameron A.</au><au>Perusich, Stephen A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium ion transport through nonaqueous perfluoroionomeric membranes</atitle><jtitle>Polymer engineering and science</jtitle><addtitle>Polym Eng Sci</addtitle><date>2002-07</date><risdate>2002</risdate><volume>42</volume><issue>7</issue><spage>1469</spage><epage>1480</epage><pages>1469-1480</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><coden>PYESAZ</coden><abstract>The transport properties of lithiated perfluorinated ionomers imbibed with nonaqueous solvents and solvent mixtures were studied. Polymeric ion‐exchange membranes have potential use in the next generation single‐ion secondary lithium polymer batteries, where the lithiated form of the membrane is used as a polymer electrolyte. The novelty of the approach for lithium battery applications lies in the advantage offered by a transference number of unity, no additional salt (e.g., LiPF6) is needed, and the excellent physical and chemical stability of the fluoropolymers. Ion‐exchange membranes were converted to the Li+ salt form and analyzed for total conversion using FT‐IR. Nonaqueous solvents and solvent mixtures were imbibed into the membranes in a glove box, and the uptake was measured over time. A four‐point probe was used to determine the ionic conductivity based on impedance measurements performed over a frequency range of 10 to 35,000 Hz. Conductivities exceeding 10−4 S/cm with transference numbers of unity were achieved making these ionomeric membranes potentially useful in rechargeable lithium polymer batteries.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/pen.11044</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-3888
ispartof Polymer engineering and science, 2002-07, Vol.42 (7), p.1469-1480
issn 0032-3888
1548-2634
language eng
recordid cdi_proquest_journals_218609345
source Access via Wiley Online Library
subjects Applied sciences
Evaluation
Exact sciences and technology
Exchange resins and membranes
Forms of application and semi-finished materials
Ion-permeable membranes
Lithium cells
Materials
Membranes (Technology)
Polymer industry, paints, wood
Polymers
Properties
Technology of polymers
title Lithium ion transport through nonaqueous perfluoroionomeric membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A55%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium%20ion%20transport%20through%20nonaqueous%20perfluoroionomeric%20membranes&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Sachan,%20Sunil&rft.date=2002-07&rft.volume=42&rft.issue=7&rft.spage=1469&rft.epage=1480&rft.pages=1469-1480&rft.issn=0032-3888&rft.eissn=1548-2634&rft.coden=PYESAZ&rft_id=info:doi/10.1002/pen.11044&rft_dat=%3Cgale_proqu%3EA90307961%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218609345&rft_id=info:pmid/&rft_galeid=A90307961&rfr_iscdi=true