Rheological and mechanical behavior of blends of styrene-butadiene rubber with polypropylene
The microstructural, rheological, and mechanical properties of polymer blends composed of continuous polypropylene (PP) and styrene‐butadiene rubber (SBR) phases are reported. Two series of materials are studied: a commercial SBR and PP fraction varied over 20–45 wt% and four custom synthesized SBR...
Gespeichert in:
Veröffentlicht in: | Polymer engineering and science 2005-11, Vol.45 (11), p.1487-1497 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1497 |
---|---|
container_issue | 11 |
container_start_page | 1487 |
container_title | Polymer engineering and science |
container_volume | 45 |
creator | Cook, Robert F. Koester, Kurt J. Macosko, Christopher W. Ajbani, Manoj |
description | The microstructural, rheological, and mechanical properties of polymer blends composed of continuous polypropylene (PP) and styrene‐butadiene rubber (SBR) phases are reported. Two series of materials are studied: a commercial SBR and PP fraction varied over 20–45 wt% and four custom synthesized SBR materials, including branched and linear configurations, at fixed PP fraction of 35 wt%. The μm‐scale microstructural features are characterized by force microscopy, melt viscosity measured via capillary rheometry, and solid deformation properties determined by uniaxial tensile and Vickers indentation hardness tests. Melt viscosity decreased, and solid modulus, yield stress, hardness, ultimate tensile strength, and failure strain all increased with PP content. Melt viscosity, modulus, and hardness all increased with increasing microstructural scale, independent of SBR type. The results suggest that such composites are good candidates for soft touch materials, combining the melt processing characteristics of PP with the solid elastomeric characteristics of SBR, and that there is great flexibility in tuning the composition to optimize both processing and mechanical properties. POLYM. ENG. SCI., 45:1487–1497, 2005. © 2005 Society of Plastics Engineers |
doi_str_mv | 10.1002/pen.20286 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_218606067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>928914981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3646-841729f5f996082616c03c6920f20715b9289610c2f5c02de794f80ba93c45ac3</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOF4WvkERXLionpy0abIUcVQQ7-JGCGkmcaq1rUlH7dubcbysJIucwPd_J_yEbFHYowC439lmDwEFXyIjmmciRc6yZTICYJgyIcQqWQvhCSLLcjkiD9dT29btY2V0nehmkrxYM9XN17O0U_1WtT5pXVLWtpmE-RT6wdvGpuWs15MqTomflaX1yXvVT5OurYfOt90QebtBVpyug938vtfJ3fjo9vAkPbs4Pj08OEsN4xlPRUYLlC53UnIQyCk3wAyXCA6hoHkpUUhOwaDLDeDEFjJzAkotmclybdg62V544-bXmQ29empnvokrFVLBIZ4iQrsLyPg2BG-d6nz1ov2gKKh5dyp2p766i-zOt1CH2ITzujFV-AsUmCPi3Lm_4N6r2g7_C9Xl0fmPOV0kqtDbj9-E9s8q_rHI1f35sbphxfUVB6bG7BNVYIuj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218606067</pqid></control><display><type>article</type><title>Rheological and mechanical behavior of blends of styrene-butadiene rubber with polypropylene</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cook, Robert F. ; Koester, Kurt J. ; Macosko, Christopher W. ; Ajbani, Manoj</creator><creatorcontrib>Cook, Robert F. ; Koester, Kurt J. ; Macosko, Christopher W. ; Ajbani, Manoj</creatorcontrib><description>The microstructural, rheological, and mechanical properties of polymer blends composed of continuous polypropylene (PP) and styrene‐butadiene rubber (SBR) phases are reported. Two series of materials are studied: a commercial SBR and PP fraction varied over 20–45 wt% and four custom synthesized SBR materials, including branched and linear configurations, at fixed PP fraction of 35 wt%. The μm‐scale microstructural features are characterized by force microscopy, melt viscosity measured via capillary rheometry, and solid deformation properties determined by uniaxial tensile and Vickers indentation hardness tests. Melt viscosity decreased, and solid modulus, yield stress, hardness, ultimate tensile strength, and failure strain all increased with PP content. Melt viscosity, modulus, and hardness all increased with increasing microstructural scale, independent of SBR type. The results suggest that such composites are good candidates for soft touch materials, combining the melt processing characteristics of PP with the solid elastomeric characteristics of SBR, and that there is great flexibility in tuning the composition to optimize both processing and mechanical properties. POLYM. ENG. SCI., 45:1487–1497, 2005. © 2005 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.20286</identifier><identifier>CODEN: PYESAZ</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Composite materials ; Exact sciences and technology ; Machinery and processing ; Mechanical properties ; Moulding compound preparation. Mixing ; Plastics ; Polymer industry, paints, wood ; Polymer processing ; Polypropylene ; Rheology ; Rubber ; Technology of polymers</subject><ispartof>Polymer engineering and science, 2005-11, Vol.45 (11), p.1487-1497</ispartof><rights>Copyright © 2005 Society of Plastics Engineers</rights><rights>2006 INIST-CNRS</rights><rights>Copyright Society of Plastics Engineers Nov 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3646-841729f5f996082616c03c6920f20715b9289610c2f5c02de794f80ba93c45ac3</citedby><cites>FETCH-LOGICAL-c3646-841729f5f996082616c03c6920f20715b9289610c2f5c02de794f80ba93c45ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.20286$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.20286$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17252227$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cook, Robert F.</creatorcontrib><creatorcontrib>Koester, Kurt J.</creatorcontrib><creatorcontrib>Macosko, Christopher W.</creatorcontrib><creatorcontrib>Ajbani, Manoj</creatorcontrib><title>Rheological and mechanical behavior of blends of styrene-butadiene rubber with polypropylene</title><title>Polymer engineering and science</title><addtitle>Polym Eng Sci</addtitle><description>The microstructural, rheological, and mechanical properties of polymer blends composed of continuous polypropylene (PP) and styrene‐butadiene rubber (SBR) phases are reported. Two series of materials are studied: a commercial SBR and PP fraction varied over 20–45 wt% and four custom synthesized SBR materials, including branched and linear configurations, at fixed PP fraction of 35 wt%. The μm‐scale microstructural features are characterized by force microscopy, melt viscosity measured via capillary rheometry, and solid deformation properties determined by uniaxial tensile and Vickers indentation hardness tests. Melt viscosity decreased, and solid modulus, yield stress, hardness, ultimate tensile strength, and failure strain all increased with PP content. Melt viscosity, modulus, and hardness all increased with increasing microstructural scale, independent of SBR type. The results suggest that such composites are good candidates for soft touch materials, combining the melt processing characteristics of PP with the solid elastomeric characteristics of SBR, and that there is great flexibility in tuning the composition to optimize both processing and mechanical properties. POLYM. ENG. SCI., 45:1487–1497, 2005. © 2005 Society of Plastics Engineers</description><subject>Applied sciences</subject><subject>Composite materials</subject><subject>Exact sciences and technology</subject><subject>Machinery and processing</subject><subject>Mechanical properties</subject><subject>Moulding compound preparation. Mixing</subject><subject>Plastics</subject><subject>Polymer industry, paints, wood</subject><subject>Polymer processing</subject><subject>Polypropylene</subject><subject>Rheology</subject><subject>Rubber</subject><subject>Technology of polymers</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMtKxDAUhoMoOF4WvkERXLionpy0abIUcVQQ7-JGCGkmcaq1rUlH7dubcbysJIucwPd_J_yEbFHYowC439lmDwEFXyIjmmciRc6yZTICYJgyIcQqWQvhCSLLcjkiD9dT29btY2V0nehmkrxYM9XN17O0U_1WtT5pXVLWtpmE-RT6wdvGpuWs15MqTomflaX1yXvVT5OurYfOt90QebtBVpyug938vtfJ3fjo9vAkPbs4Pj08OEsN4xlPRUYLlC53UnIQyCk3wAyXCA6hoHkpUUhOwaDLDeDEFjJzAkotmclybdg62V544-bXmQ29empnvokrFVLBIZ4iQrsLyPg2BG-d6nz1ov2gKKh5dyp2p766i-zOt1CH2ITzujFV-AsUmCPi3Lm_4N6r2g7_C9Xl0fmPOV0kqtDbj9-E9s8q_rHI1f35sbphxfUVB6bG7BNVYIuj</recordid><startdate>200511</startdate><enddate>200511</enddate><creator>Cook, Robert F.</creator><creator>Koester, Kurt J.</creator><creator>Macosko, Christopher W.</creator><creator>Ajbani, Manoj</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>200511</creationdate><title>Rheological and mechanical behavior of blends of styrene-butadiene rubber with polypropylene</title><author>Cook, Robert F. ; Koester, Kurt J. ; Macosko, Christopher W. ; Ajbani, Manoj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3646-841729f5f996082616c03c6920f20715b9289610c2f5c02de794f80ba93c45ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Composite materials</topic><topic>Exact sciences and technology</topic><topic>Machinery and processing</topic><topic>Mechanical properties</topic><topic>Moulding compound preparation. Mixing</topic><topic>Plastics</topic><topic>Polymer industry, paints, wood</topic><topic>Polymer processing</topic><topic>Polypropylene</topic><topic>Rheology</topic><topic>Rubber</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cook, Robert F.</creatorcontrib><creatorcontrib>Koester, Kurt J.</creatorcontrib><creatorcontrib>Macosko, Christopher W.</creatorcontrib><creatorcontrib>Ajbani, Manoj</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cook, Robert F.</au><au>Koester, Kurt J.</au><au>Macosko, Christopher W.</au><au>Ajbani, Manoj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rheological and mechanical behavior of blends of styrene-butadiene rubber with polypropylene</atitle><jtitle>Polymer engineering and science</jtitle><addtitle>Polym Eng Sci</addtitle><date>2005-11</date><risdate>2005</risdate><volume>45</volume><issue>11</issue><spage>1487</spage><epage>1497</epage><pages>1487-1497</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><coden>PYESAZ</coden><abstract>The microstructural, rheological, and mechanical properties of polymer blends composed of continuous polypropylene (PP) and styrene‐butadiene rubber (SBR) phases are reported. Two series of materials are studied: a commercial SBR and PP fraction varied over 20–45 wt% and four custom synthesized SBR materials, including branched and linear configurations, at fixed PP fraction of 35 wt%. The μm‐scale microstructural features are characterized by force microscopy, melt viscosity measured via capillary rheometry, and solid deformation properties determined by uniaxial tensile and Vickers indentation hardness tests. Melt viscosity decreased, and solid modulus, yield stress, hardness, ultimate tensile strength, and failure strain all increased with PP content. Melt viscosity, modulus, and hardness all increased with increasing microstructural scale, independent of SBR type. The results suggest that such composites are good candidates for soft touch materials, combining the melt processing characteristics of PP with the solid elastomeric characteristics of SBR, and that there is great flexibility in tuning the composition to optimize both processing and mechanical properties. POLYM. ENG. SCI., 45:1487–1497, 2005. © 2005 Society of Plastics Engineers</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/pen.20286</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-3888 |
ispartof | Polymer engineering and science, 2005-11, Vol.45 (11), p.1487-1497 |
issn | 0032-3888 1548-2634 |
language | eng |
recordid | cdi_proquest_journals_218606067 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Applied sciences Composite materials Exact sciences and technology Machinery and processing Mechanical properties Moulding compound preparation. Mixing Plastics Polymer industry, paints, wood Polymer processing Polypropylene Rheology Rubber Technology of polymers |
title | Rheological and mechanical behavior of blends of styrene-butadiene rubber with polypropylene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A26%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rheological%20and%20mechanical%20behavior%20of%20blends%20of%20styrene-butadiene%20rubber%20with%20polypropylene&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Cook,%20Robert%20F.&rft.date=2005-11&rft.volume=45&rft.issue=11&rft.spage=1487&rft.epage=1497&rft.pages=1487-1497&rft.issn=0032-3888&rft.eissn=1548-2634&rft.coden=PYESAZ&rft_id=info:doi/10.1002/pen.20286&rft_dat=%3Cproquest_cross%3E928914981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218606067&rft_id=info:pmid/&rfr_iscdi=true |