Rheological and mechanical behavior of blends of styrene-butadiene rubber with polypropylene

The microstructural, rheological, and mechanical properties of polymer blends composed of continuous polypropylene (PP) and styrene‐butadiene rubber (SBR) phases are reported. Two series of materials are studied: a commercial SBR and PP fraction varied over 20–45 wt% and four custom synthesized SBR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer engineering and science 2005-11, Vol.45 (11), p.1487-1497
Hauptverfasser: Cook, Robert F., Koester, Kurt J., Macosko, Christopher W., Ajbani, Manoj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1497
container_issue 11
container_start_page 1487
container_title Polymer engineering and science
container_volume 45
creator Cook, Robert F.
Koester, Kurt J.
Macosko, Christopher W.
Ajbani, Manoj
description The microstructural, rheological, and mechanical properties of polymer blends composed of continuous polypropylene (PP) and styrene‐butadiene rubber (SBR) phases are reported. Two series of materials are studied: a commercial SBR and PP fraction varied over 20–45 wt% and four custom synthesized SBR materials, including branched and linear configurations, at fixed PP fraction of 35 wt%. The μm‐scale microstructural features are characterized by force microscopy, melt viscosity measured via capillary rheometry, and solid deformation properties determined by uniaxial tensile and Vickers indentation hardness tests. Melt viscosity decreased, and solid modulus, yield stress, hardness, ultimate tensile strength, and failure strain all increased with PP content. Melt viscosity, modulus, and hardness all increased with increasing microstructural scale, independent of SBR type. The results suggest that such composites are good candidates for soft touch materials, combining the melt processing characteristics of PP with the solid elastomeric characteristics of SBR, and that there is great flexibility in tuning the composition to optimize both processing and mechanical properties. POLYM. ENG. SCI., 45:1487–1497, 2005. © 2005 Society of Plastics Engineers
doi_str_mv 10.1002/pen.20286
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_218606067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>928914981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3646-841729f5f996082616c03c6920f20715b9289610c2f5c02de794f80ba93c45ac3</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOF4WvkERXLionpy0abIUcVQQ7-JGCGkmcaq1rUlH7dubcbysJIucwPd_J_yEbFHYowC439lmDwEFXyIjmmciRc6yZTICYJgyIcQqWQvhCSLLcjkiD9dT29btY2V0nehmkrxYM9XN17O0U_1WtT5pXVLWtpmE-RT6wdvGpuWs15MqTomflaX1yXvVT5OurYfOt90QebtBVpyug938vtfJ3fjo9vAkPbs4Pj08OEsN4xlPRUYLlC53UnIQyCk3wAyXCA6hoHkpUUhOwaDLDeDEFjJzAkotmclybdg62V544-bXmQ29empnvokrFVLBIZ4iQrsLyPg2BG-d6nz1ov2gKKh5dyp2p766i-zOt1CH2ITzujFV-AsUmCPi3Lm_4N6r2g7_C9Xl0fmPOV0kqtDbj9-E9s8q_rHI1f35sbphxfUVB6bG7BNVYIuj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218606067</pqid></control><display><type>article</type><title>Rheological and mechanical behavior of blends of styrene-butadiene rubber with polypropylene</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cook, Robert F. ; Koester, Kurt J. ; Macosko, Christopher W. ; Ajbani, Manoj</creator><creatorcontrib>Cook, Robert F. ; Koester, Kurt J. ; Macosko, Christopher W. ; Ajbani, Manoj</creatorcontrib><description>The microstructural, rheological, and mechanical properties of polymer blends composed of continuous polypropylene (PP) and styrene‐butadiene rubber (SBR) phases are reported. Two series of materials are studied: a commercial SBR and PP fraction varied over 20–45 wt% and four custom synthesized SBR materials, including branched and linear configurations, at fixed PP fraction of 35 wt%. The μm‐scale microstructural features are characterized by force microscopy, melt viscosity measured via capillary rheometry, and solid deformation properties determined by uniaxial tensile and Vickers indentation hardness tests. Melt viscosity decreased, and solid modulus, yield stress, hardness, ultimate tensile strength, and failure strain all increased with PP content. Melt viscosity, modulus, and hardness all increased with increasing microstructural scale, independent of SBR type. The results suggest that such composites are good candidates for soft touch materials, combining the melt processing characteristics of PP with the solid elastomeric characteristics of SBR, and that there is great flexibility in tuning the composition to optimize both processing and mechanical properties. POLYM. ENG. SCI., 45:1487–1497, 2005. © 2005 Society of Plastics Engineers</description><identifier>ISSN: 0032-3888</identifier><identifier>EISSN: 1548-2634</identifier><identifier>DOI: 10.1002/pen.20286</identifier><identifier>CODEN: PYESAZ</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Composite materials ; Exact sciences and technology ; Machinery and processing ; Mechanical properties ; Moulding compound preparation. Mixing ; Plastics ; Polymer industry, paints, wood ; Polymer processing ; Polypropylene ; Rheology ; Rubber ; Technology of polymers</subject><ispartof>Polymer engineering and science, 2005-11, Vol.45 (11), p.1487-1497</ispartof><rights>Copyright © 2005 Society of Plastics Engineers</rights><rights>2006 INIST-CNRS</rights><rights>Copyright Society of Plastics Engineers Nov 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3646-841729f5f996082616c03c6920f20715b9289610c2f5c02de794f80ba93c45ac3</citedby><cites>FETCH-LOGICAL-c3646-841729f5f996082616c03c6920f20715b9289610c2f5c02de794f80ba93c45ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpen.20286$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpen.20286$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17252227$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cook, Robert F.</creatorcontrib><creatorcontrib>Koester, Kurt J.</creatorcontrib><creatorcontrib>Macosko, Christopher W.</creatorcontrib><creatorcontrib>Ajbani, Manoj</creatorcontrib><title>Rheological and mechanical behavior of blends of styrene-butadiene rubber with polypropylene</title><title>Polymer engineering and science</title><addtitle>Polym Eng Sci</addtitle><description>The microstructural, rheological, and mechanical properties of polymer blends composed of continuous polypropylene (PP) and styrene‐butadiene rubber (SBR) phases are reported. Two series of materials are studied: a commercial SBR and PP fraction varied over 20–45 wt% and four custom synthesized SBR materials, including branched and linear configurations, at fixed PP fraction of 35 wt%. The μm‐scale microstructural features are characterized by force microscopy, melt viscosity measured via capillary rheometry, and solid deformation properties determined by uniaxial tensile and Vickers indentation hardness tests. Melt viscosity decreased, and solid modulus, yield stress, hardness, ultimate tensile strength, and failure strain all increased with PP content. Melt viscosity, modulus, and hardness all increased with increasing microstructural scale, independent of SBR type. The results suggest that such composites are good candidates for soft touch materials, combining the melt processing characteristics of PP with the solid elastomeric characteristics of SBR, and that there is great flexibility in tuning the composition to optimize both processing and mechanical properties. POLYM. ENG. SCI., 45:1487–1497, 2005. © 2005 Society of Plastics Engineers</description><subject>Applied sciences</subject><subject>Composite materials</subject><subject>Exact sciences and technology</subject><subject>Machinery and processing</subject><subject>Mechanical properties</subject><subject>Moulding compound preparation. Mixing</subject><subject>Plastics</subject><subject>Polymer industry, paints, wood</subject><subject>Polymer processing</subject><subject>Polypropylene</subject><subject>Rheology</subject><subject>Rubber</subject><subject>Technology of polymers</subject><issn>0032-3888</issn><issn>1548-2634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMtKxDAUhoMoOF4WvkERXLionpy0abIUcVQQ7-JGCGkmcaq1rUlH7dubcbysJIucwPd_J_yEbFHYowC439lmDwEFXyIjmmciRc6yZTICYJgyIcQqWQvhCSLLcjkiD9dT29btY2V0nehmkrxYM9XN17O0U_1WtT5pXVLWtpmE-RT6wdvGpuWs15MqTomflaX1yXvVT5OurYfOt90QebtBVpyug938vtfJ3fjo9vAkPbs4Pj08OEsN4xlPRUYLlC53UnIQyCk3wAyXCA6hoHkpUUhOwaDLDeDEFjJzAkotmclybdg62V544-bXmQ29empnvokrFVLBIZ4iQrsLyPg2BG-d6nz1ov2gKKh5dyp2p766i-zOt1CH2ITzujFV-AsUmCPi3Lm_4N6r2g7_C9Xl0fmPOV0kqtDbj9-E9s8q_rHI1f35sbphxfUVB6bG7BNVYIuj</recordid><startdate>200511</startdate><enddate>200511</enddate><creator>Cook, Robert F.</creator><creator>Koester, Kurt J.</creator><creator>Macosko, Christopher W.</creator><creator>Ajbani, Manoj</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>200511</creationdate><title>Rheological and mechanical behavior of blends of styrene-butadiene rubber with polypropylene</title><author>Cook, Robert F. ; Koester, Kurt J. ; Macosko, Christopher W. ; Ajbani, Manoj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3646-841729f5f996082616c03c6920f20715b9289610c2f5c02de794f80ba93c45ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Composite materials</topic><topic>Exact sciences and technology</topic><topic>Machinery and processing</topic><topic>Mechanical properties</topic><topic>Moulding compound preparation. Mixing</topic><topic>Plastics</topic><topic>Polymer industry, paints, wood</topic><topic>Polymer processing</topic><topic>Polypropylene</topic><topic>Rheology</topic><topic>Rubber</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cook, Robert F.</creatorcontrib><creatorcontrib>Koester, Kurt J.</creatorcontrib><creatorcontrib>Macosko, Christopher W.</creatorcontrib><creatorcontrib>Ajbani, Manoj</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Polymer engineering and science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cook, Robert F.</au><au>Koester, Kurt J.</au><au>Macosko, Christopher W.</au><au>Ajbani, Manoj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rheological and mechanical behavior of blends of styrene-butadiene rubber with polypropylene</atitle><jtitle>Polymer engineering and science</jtitle><addtitle>Polym Eng Sci</addtitle><date>2005-11</date><risdate>2005</risdate><volume>45</volume><issue>11</issue><spage>1487</spage><epage>1497</epage><pages>1487-1497</pages><issn>0032-3888</issn><eissn>1548-2634</eissn><coden>PYESAZ</coden><abstract>The microstructural, rheological, and mechanical properties of polymer blends composed of continuous polypropylene (PP) and styrene‐butadiene rubber (SBR) phases are reported. Two series of materials are studied: a commercial SBR and PP fraction varied over 20–45 wt% and four custom synthesized SBR materials, including branched and linear configurations, at fixed PP fraction of 35 wt%. The μm‐scale microstructural features are characterized by force microscopy, melt viscosity measured via capillary rheometry, and solid deformation properties determined by uniaxial tensile and Vickers indentation hardness tests. Melt viscosity decreased, and solid modulus, yield stress, hardness, ultimate tensile strength, and failure strain all increased with PP content. Melt viscosity, modulus, and hardness all increased with increasing microstructural scale, independent of SBR type. The results suggest that such composites are good candidates for soft touch materials, combining the melt processing characteristics of PP with the solid elastomeric characteristics of SBR, and that there is great flexibility in tuning the composition to optimize both processing and mechanical properties. POLYM. ENG. SCI., 45:1487–1497, 2005. © 2005 Society of Plastics Engineers</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/pen.20286</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-3888
ispartof Polymer engineering and science, 2005-11, Vol.45 (11), p.1487-1497
issn 0032-3888
1548-2634
language eng
recordid cdi_proquest_journals_218606067
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Composite materials
Exact sciences and technology
Machinery and processing
Mechanical properties
Moulding compound preparation. Mixing
Plastics
Polymer industry, paints, wood
Polymer processing
Polypropylene
Rheology
Rubber
Technology of polymers
title Rheological and mechanical behavior of blends of styrene-butadiene rubber with polypropylene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A26%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rheological%20and%20mechanical%20behavior%20of%20blends%20of%20styrene-butadiene%20rubber%20with%20polypropylene&rft.jtitle=Polymer%20engineering%20and%20science&rft.au=Cook,%20Robert%20F.&rft.date=2005-11&rft.volume=45&rft.issue=11&rft.spage=1487&rft.epage=1497&rft.pages=1487-1497&rft.issn=0032-3888&rft.eissn=1548-2634&rft.coden=PYESAZ&rft_id=info:doi/10.1002/pen.20286&rft_dat=%3Cproquest_cross%3E928914981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218606067&rft_id=info:pmid/&rfr_iscdi=true