Quantitative Estimation of Biomass of Alpine Grasslands Using Hyperspectral Remote Sensing

In order to promote the application of hyperspectral remote sensing in the quantification of grassland areas' physiological and biochemical parameters, based on the spectral characteristics of ground measurements, the dry AGB and multisensor satellite remote sensing data, including such methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rangeland ecology & management 2019-03, Vol.72 (2), p.336-346
Hauptverfasser: Kong, Bo, Yu, Huan, Du, Rongxiang, Wang, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 346
container_issue 2
container_start_page 336
container_title Rangeland ecology & management
container_volume 72
creator Kong, Bo
Yu, Huan
Du, Rongxiang
Wang, Qing
description In order to promote the application of hyperspectral remote sensing in the quantification of grassland areas' physiological and biochemical parameters, based on the spectral characteristics of ground measurements, the dry AGB and multisensor satellite remote sensing data, including such methods as correlation analysis, scaling up, and regression analysis, were used to establish a multiscale remote sensing inversion model for the alpine grassland biomass. The feasibility and effectiveness of the modelwere verified by the remote sensing estimation of a time-space sequence biomass of a plateau grassland in northern Tibet. The results showed that, in the ground spectral characteristic parameters of the grassland's biomass, the original wave bands of 550, 680, 860, and 900 nm, as well as their combination form, had a good correlation with biomass. Also, the remote sensing biomass estimationmodel established on the basis of the two spectral characteristics (VI2 and Normalized Difference Vegetation Index [NDVI]) had a high inversion accuracy andwas easy to realize, with a fitting R2 of 0.869 and an F test value of 92.6. The biomass remote sensing estimate after scale transformation had a standard deviation of 53.9 kg/ha from the fitting model established by MODIS NDVI, and the estimation accuracy was 89%. Therefore, it displayed the ability to realize the estimation of large-scale and long-time sequence remote sensing biomass. The verification of themodel's accuracy, comparison of the existing research results of predecessors, and analysis of the regional development background demonstrated the effectiveness and feasibility of this method.
doi_str_mv 10.1016/j.rama.2018.10.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2185850771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1550742418303324</els_id><sourcerecordid>2185850771</sourcerecordid><originalsourceid>FETCH-LOGICAL-b369t-d9dacf32dc69a3b52dacd12ea2ef55fdb1bd43ab50d21f9d6d061b47e377bd2e3</originalsourceid><addsrcrecordid>eNqNUMtOwzAQtBBIlMIPcIrEOcF24jwkLqWCFqkS4tELF8uON8hRYgc7rdS_x6GcEaednd3ZxyB0TXBCMMlv28SJXiQUkzIQCcbsBM0IYyRmmJanPxjHRUazc3ThfYtxmhNSzNDHy06YUY9i1HuIHvyo-wCtiWwT3WvbC-8nuOgGbSBauZB3wigfbb02n9H6MIDzA9SjE130Cr0dIXoDMxUv0VkjOg9Xv3GOto8P78t1vHlePS0Xm1imeTXGqlKiblKq6rwSqWQ0pIpQEBQaxholiVRZKiTDipKmUrnCOZFZAWlRSEUhnaOb49zB2a8d-JG3dudMWMkpKVnJcFGQ0EWPXbWz3jto-ODCr-7ACeaTh7zlk4d88nDigodBdHcUQbh_r8FxX2swNSjtws9cWf23HB_lUltr4D8bvwEpyYwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2185850771</pqid></control><display><type>article</type><title>Quantitative Estimation of Biomass of Alpine Grasslands Using Hyperspectral Remote Sensing</title><source>Alma/SFX Local Collection</source><creator>Kong, Bo ; Yu, Huan ; Du, Rongxiang ; Wang, Qing</creator><creatorcontrib>Kong, Bo ; Yu, Huan ; Du, Rongxiang ; Wang, Qing</creatorcontrib><description>In order to promote the application of hyperspectral remote sensing in the quantification of grassland areas' physiological and biochemical parameters, based on the spectral characteristics of ground measurements, the dry AGB and multisensor satellite remote sensing data, including such methods as correlation analysis, scaling up, and regression analysis, were used to establish a multiscale remote sensing inversion model for the alpine grassland biomass. The feasibility and effectiveness of the modelwere verified by the remote sensing estimation of a time-space sequence biomass of a plateau grassland in northern Tibet. The results showed that, in the ground spectral characteristic parameters of the grassland's biomass, the original wave bands of 550, 680, 860, and 900 nm, as well as their combination form, had a good correlation with biomass. Also, the remote sensing biomass estimationmodel established on the basis of the two spectral characteristics (VI2 and Normalized Difference Vegetation Index [NDVI]) had a high inversion accuracy andwas easy to realize, with a fitting R2 of 0.869 and an F test value of 92.6. The biomass remote sensing estimate after scale transformation had a standard deviation of 53.9 kg/ha from the fitting model established by MODIS NDVI, and the estimation accuracy was 89%. Therefore, it displayed the ability to realize the estimation of large-scale and long-time sequence remote sensing biomass. The verification of themodel's accuracy, comparison of the existing research results of predecessors, and analysis of the regional development background demonstrated the effectiveness and feasibility of this method.</description><identifier>ISSN: 1550-7424</identifier><identifier>EISSN: 1551-5028</identifier><identifier>DOI: 10.1016/j.rama.2018.10.005</identifier><language>eng</language><publisher>Lawrence: the Society for Range Management</publisher><subject>Alpine environments ; alpine grassland ; Biomass ; Carbon ; Correlation analysis ; Data processing ; Detection ; Feasibility studies ; Grasslands ; hyperspectral remote sensing ; Inversion ; Mathematical models ; Model accuracy ; Moisture absorption ; multiscale ; Normalized difference vegetative index ; Parameters ; Regional analysis ; Regional development ; Regional planning ; Regression analysis ; Remote sensing ; Satellites ; Scaling ; Spectra ; spectral characteristic parameters ; Studies ; Terrestrial ecosystems ; Vegetation</subject><ispartof>Rangeland ecology &amp; management, 2019-03, Vol.72 (2), p.336-346</ispartof><rights>2018 The Society for Range Management. Published by Elsevier Inc. All rights reserved.</rights><rights>2018 The Society for Range Management</rights><rights>Copyright Elsevier Limited Mar 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b369t-d9dacf32dc69a3b52dacd12ea2ef55fdb1bd43ab50d21f9d6d061b47e377bd2e3</citedby><cites>FETCH-LOGICAL-b369t-d9dacf32dc69a3b52dacd12ea2ef55fdb1bd43ab50d21f9d6d061b47e377bd2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kong, Bo</creatorcontrib><creatorcontrib>Yu, Huan</creatorcontrib><creatorcontrib>Du, Rongxiang</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><title>Quantitative Estimation of Biomass of Alpine Grasslands Using Hyperspectral Remote Sensing</title><title>Rangeland ecology &amp; management</title><description>In order to promote the application of hyperspectral remote sensing in the quantification of grassland areas' physiological and biochemical parameters, based on the spectral characteristics of ground measurements, the dry AGB and multisensor satellite remote sensing data, including such methods as correlation analysis, scaling up, and regression analysis, were used to establish a multiscale remote sensing inversion model for the alpine grassland biomass. The feasibility and effectiveness of the modelwere verified by the remote sensing estimation of a time-space sequence biomass of a plateau grassland in northern Tibet. The results showed that, in the ground spectral characteristic parameters of the grassland's biomass, the original wave bands of 550, 680, 860, and 900 nm, as well as their combination form, had a good correlation with biomass. Also, the remote sensing biomass estimationmodel established on the basis of the two spectral characteristics (VI2 and Normalized Difference Vegetation Index [NDVI]) had a high inversion accuracy andwas easy to realize, with a fitting R2 of 0.869 and an F test value of 92.6. The biomass remote sensing estimate after scale transformation had a standard deviation of 53.9 kg/ha from the fitting model established by MODIS NDVI, and the estimation accuracy was 89%. Therefore, it displayed the ability to realize the estimation of large-scale and long-time sequence remote sensing biomass. The verification of themodel's accuracy, comparison of the existing research results of predecessors, and analysis of the regional development background demonstrated the effectiveness and feasibility of this method.</description><subject>Alpine environments</subject><subject>alpine grassland</subject><subject>Biomass</subject><subject>Carbon</subject><subject>Correlation analysis</subject><subject>Data processing</subject><subject>Detection</subject><subject>Feasibility studies</subject><subject>Grasslands</subject><subject>hyperspectral remote sensing</subject><subject>Inversion</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Moisture absorption</subject><subject>multiscale</subject><subject>Normalized difference vegetative index</subject><subject>Parameters</subject><subject>Regional analysis</subject><subject>Regional development</subject><subject>Regional planning</subject><subject>Regression analysis</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Scaling</subject><subject>Spectra</subject><subject>spectral characteristic parameters</subject><subject>Studies</subject><subject>Terrestrial ecosystems</subject><subject>Vegetation</subject><issn>1550-7424</issn><issn>1551-5028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNUMtOwzAQtBBIlMIPcIrEOcF24jwkLqWCFqkS4tELF8uON8hRYgc7rdS_x6GcEaednd3ZxyB0TXBCMMlv28SJXiQUkzIQCcbsBM0IYyRmmJanPxjHRUazc3ThfYtxmhNSzNDHy06YUY9i1HuIHvyo-wCtiWwT3WvbC-8nuOgGbSBauZB3wigfbb02n9H6MIDzA9SjE130Cr0dIXoDMxUv0VkjOg9Xv3GOto8P78t1vHlePS0Xm1imeTXGqlKiblKq6rwSqWQ0pIpQEBQaxholiVRZKiTDipKmUrnCOZFZAWlRSEUhnaOb49zB2a8d-JG3dudMWMkpKVnJcFGQ0EWPXbWz3jto-ODCr-7ACeaTh7zlk4d88nDigodBdHcUQbh_r8FxX2swNSjtws9cWf23HB_lUltr4D8bvwEpyYwA</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Kong, Bo</creator><creator>Yu, Huan</creator><creator>Du, Rongxiang</creator><creator>Wang, Qing</creator><general>the Society for Range Management</general><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20190301</creationdate><title>Quantitative Estimation of Biomass of Alpine Grasslands Using Hyperspectral Remote Sensing</title><author>Kong, Bo ; Yu, Huan ; Du, Rongxiang ; Wang, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b369t-d9dacf32dc69a3b52dacd12ea2ef55fdb1bd43ab50d21f9d6d061b47e377bd2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alpine environments</topic><topic>alpine grassland</topic><topic>Biomass</topic><topic>Carbon</topic><topic>Correlation analysis</topic><topic>Data processing</topic><topic>Detection</topic><topic>Feasibility studies</topic><topic>Grasslands</topic><topic>hyperspectral remote sensing</topic><topic>Inversion</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Moisture absorption</topic><topic>multiscale</topic><topic>Normalized difference vegetative index</topic><topic>Parameters</topic><topic>Regional analysis</topic><topic>Regional development</topic><topic>Regional planning</topic><topic>Regression analysis</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Scaling</topic><topic>Spectra</topic><topic>spectral characteristic parameters</topic><topic>Studies</topic><topic>Terrestrial ecosystems</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Bo</creatorcontrib><creatorcontrib>Yu, Huan</creatorcontrib><creatorcontrib>Du, Rongxiang</creatorcontrib><creatorcontrib>Wang, Qing</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Rangeland ecology &amp; management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Bo</au><au>Yu, Huan</au><au>Du, Rongxiang</au><au>Wang, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Estimation of Biomass of Alpine Grasslands Using Hyperspectral Remote Sensing</atitle><jtitle>Rangeland ecology &amp; management</jtitle><date>2019-03-01</date><risdate>2019</risdate><volume>72</volume><issue>2</issue><spage>336</spage><epage>346</epage><pages>336-346</pages><issn>1550-7424</issn><eissn>1551-5028</eissn><abstract>In order to promote the application of hyperspectral remote sensing in the quantification of grassland areas' physiological and biochemical parameters, based on the spectral characteristics of ground measurements, the dry AGB and multisensor satellite remote sensing data, including such methods as correlation analysis, scaling up, and regression analysis, were used to establish a multiscale remote sensing inversion model for the alpine grassland biomass. The feasibility and effectiveness of the modelwere verified by the remote sensing estimation of a time-space sequence biomass of a plateau grassland in northern Tibet. The results showed that, in the ground spectral characteristic parameters of the grassland's biomass, the original wave bands of 550, 680, 860, and 900 nm, as well as their combination form, had a good correlation with biomass. Also, the remote sensing biomass estimationmodel established on the basis of the two spectral characteristics (VI2 and Normalized Difference Vegetation Index [NDVI]) had a high inversion accuracy andwas easy to realize, with a fitting R2 of 0.869 and an F test value of 92.6. The biomass remote sensing estimate after scale transformation had a standard deviation of 53.9 kg/ha from the fitting model established by MODIS NDVI, and the estimation accuracy was 89%. Therefore, it displayed the ability to realize the estimation of large-scale and long-time sequence remote sensing biomass. The verification of themodel's accuracy, comparison of the existing research results of predecessors, and analysis of the regional development background demonstrated the effectiveness and feasibility of this method.</abstract><cop>Lawrence</cop><pub>the Society for Range Management</pub><doi>10.1016/j.rama.2018.10.005</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1550-7424
ispartof Rangeland ecology & management, 2019-03, Vol.72 (2), p.336-346
issn 1550-7424
1551-5028
language eng
recordid cdi_proquest_journals_2185850771
source Alma/SFX Local Collection
subjects Alpine environments
alpine grassland
Biomass
Carbon
Correlation analysis
Data processing
Detection
Feasibility studies
Grasslands
hyperspectral remote sensing
Inversion
Mathematical models
Model accuracy
Moisture absorption
multiscale
Normalized difference vegetative index
Parameters
Regional analysis
Regional development
Regional planning
Regression analysis
Remote sensing
Satellites
Scaling
Spectra
spectral characteristic parameters
Studies
Terrestrial ecosystems
Vegetation
title Quantitative Estimation of Biomass of Alpine Grasslands Using Hyperspectral Remote Sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T15%3A37%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Estimation%20of%20Biomass%20of%20Alpine%20Grasslands%20Using%20Hyperspectral%20Remote%20Sensing&rft.jtitle=Rangeland%20ecology%20&%20management&rft.au=Kong,%20Bo&rft.date=2019-03-01&rft.volume=72&rft.issue=2&rft.spage=336&rft.epage=346&rft.pages=336-346&rft.issn=1550-7424&rft.eissn=1551-5028&rft_id=info:doi/10.1016/j.rama.2018.10.005&rft_dat=%3Cproquest_cross%3E2185850771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2185850771&rft_id=info:pmid/&rft_els_id=S1550742418303324&rfr_iscdi=true