Isotropic Curves and Their Characterizations in Complex Space C4

In this study, we investigate the classical differential geometry of isotropic curves in the complex space C4. We examine the constant breadth of isotropic curves and obtain some results regarding these isotropic curves. We express some characterizations of these curves via the E. Cartan derivative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of mathematical combinatorics 2018-09, Vol.3, p.11-24
Hauptverfasser: Yilmaz, Süha, Savci, Ümit Ziya, Akbiyik, Mücahit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue
container_start_page 11
container_title International journal of mathematical combinatorics
container_volume 3
creator Yilmaz, Süha
Savci, Ümit Ziya
Akbiyik, Mücahit
description In this study, we investigate the classical differential geometry of isotropic curves in the complex space C4. We examine the constant breadth of isotropic curves and obtain some results regarding these isotropic curves. We express some characterizations of these curves via the E. Cartan derivative formula. We also indicate that the isotropic vector of these curves and pseudo curvature satisfy a third order vector differential equation with variable coefficients. We study this differential equation in some special cases. We dene evolute and involute of the isotropic curve and express some characterizations of these curves in terms of E. Cartan equations. The isotropic rectifying curve and isotropic helix are characterized in C4. Finally, we present the conditions for an isotropic curve to be an isotropic helix.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2185816075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2185816075</sourcerecordid><originalsourceid>FETCH-proquest_journals_21858160753</originalsourceid><addsrcrecordid>eNqNij0LwjAUAIMoWD_-wwPnQmIb225CUHTWvYT6pCk1iXmpiL9eB3F2uoO7EUtElRWp4Hkx_rmUUzYj6jiXVZaXCdseycXgvGlADeGBBNpe4NyiCaBaHXQTMZiXjsZZAmNBuZvv8QknrxsElS_Y5Kp7wuWXc7ba787qkPrg7gNSrDs3BPtJ9VqUshQbXsjsv-sNBeA52g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2185816075</pqid></control><display><type>article</type><title>Isotropic Curves and Their Characterizations in Complex Space C4</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Yilmaz, Süha ; Savci, Ümit Ziya ; Akbiyik, Mücahit</creator><creatorcontrib>Yilmaz, Süha ; Savci, Ümit Ziya ; Akbiyik, Mücahit</creatorcontrib><description>In this study, we investigate the classical differential geometry of isotropic curves in the complex space C4. We examine the constant breadth of isotropic curves and obtain some results regarding these isotropic curves. We express some characterizations of these curves via the E. Cartan derivative formula. We also indicate that the isotropic vector of these curves and pseudo curvature satisfy a third order vector differential equation with variable coefficients. We study this differential equation in some special cases. We dene evolute and involute of the isotropic curve and express some characterizations of these curves in terms of E. Cartan equations. The isotropic rectifying curve and isotropic helix are characterized in C4. Finally, we present the conditions for an isotropic curve to be an isotropic helix.</description><identifier>ISSN: 1937-1055</identifier><identifier>EISSN: 1937-1047</identifier><language>eng</language><publisher>Gallup: Science Seeking - distributor</publisher><subject>Curvature ; Curves ; Differential equations ; Differential geometry ; Geometry ; Mathematical analysis</subject><ispartof>International journal of mathematical combinatorics, 2018-09, Vol.3, p.11-24</ispartof><rights>2018. This work is published under NOCC (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Yilmaz, Süha</creatorcontrib><creatorcontrib>Savci, Ümit Ziya</creatorcontrib><creatorcontrib>Akbiyik, Mücahit</creatorcontrib><title>Isotropic Curves and Their Characterizations in Complex Space C4</title><title>International journal of mathematical combinatorics</title><description>In this study, we investigate the classical differential geometry of isotropic curves in the complex space C4. We examine the constant breadth of isotropic curves and obtain some results regarding these isotropic curves. We express some characterizations of these curves via the E. Cartan derivative formula. We also indicate that the isotropic vector of these curves and pseudo curvature satisfy a third order vector differential equation with variable coefficients. We study this differential equation in some special cases. We dene evolute and involute of the isotropic curve and express some characterizations of these curves in terms of E. Cartan equations. The isotropic rectifying curve and isotropic helix are characterized in C4. Finally, we present the conditions for an isotropic curve to be an isotropic helix.</description><subject>Curvature</subject><subject>Curves</subject><subject>Differential equations</subject><subject>Differential geometry</subject><subject>Geometry</subject><subject>Mathematical analysis</subject><issn>1937-1055</issn><issn>1937-1047</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNij0LwjAUAIMoWD_-wwPnQmIb225CUHTWvYT6pCk1iXmpiL9eB3F2uoO7EUtElRWp4Hkx_rmUUzYj6jiXVZaXCdseycXgvGlADeGBBNpe4NyiCaBaHXQTMZiXjsZZAmNBuZvv8QknrxsElS_Y5Kp7wuWXc7ba787qkPrg7gNSrDs3BPtJ9VqUshQbXsjsv-sNBeA52g</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Yilmaz, Süha</creator><creator>Savci, Ümit Ziya</creator><creator>Akbiyik, Mücahit</creator><general>Science Seeking - distributor</general><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20180901</creationdate><title>Isotropic Curves and Their Characterizations in Complex Space C4</title><author>Yilmaz, Süha ; Savci, Ümit Ziya ; Akbiyik, Mücahit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21858160753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Curvature</topic><topic>Curves</topic><topic>Differential equations</topic><topic>Differential geometry</topic><topic>Geometry</topic><topic>Mathematical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Yilmaz, Süha</creatorcontrib><creatorcontrib>Savci, Ümit Ziya</creatorcontrib><creatorcontrib>Akbiyik, Mücahit</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of mathematical combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yilmaz, Süha</au><au>Savci, Ümit Ziya</au><au>Akbiyik, Mücahit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isotropic Curves and Their Characterizations in Complex Space C4</atitle><jtitle>International journal of mathematical combinatorics</jtitle><date>2018-09-01</date><risdate>2018</risdate><volume>3</volume><spage>11</spage><epage>24</epage><pages>11-24</pages><issn>1937-1055</issn><eissn>1937-1047</eissn><abstract>In this study, we investigate the classical differential geometry of isotropic curves in the complex space C4. We examine the constant breadth of isotropic curves and obtain some results regarding these isotropic curves. We express some characterizations of these curves via the E. Cartan derivative formula. We also indicate that the isotropic vector of these curves and pseudo curvature satisfy a third order vector differential equation with variable coefficients. We study this differential equation in some special cases. We dene evolute and involute of the isotropic curve and express some characterizations of these curves in terms of E. Cartan equations. The isotropic rectifying curve and isotropic helix are characterized in C4. Finally, we present the conditions for an isotropic curve to be an isotropic helix.</abstract><cop>Gallup</cop><pub>Science Seeking - distributor</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1937-1055
ispartof International journal of mathematical combinatorics, 2018-09, Vol.3, p.11-24
issn 1937-1055
1937-1047
language eng
recordid cdi_proquest_journals_2185816075
source EZB-FREE-00999 freely available EZB journals
subjects Curvature
Curves
Differential equations
Differential geometry
Geometry
Mathematical analysis
title Isotropic Curves and Their Characterizations in Complex Space C4
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A57%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isotropic%20Curves%20and%20Their%20Characterizations%20in%20Complex%20Space%20C4&rft.jtitle=International%20journal%20of%20mathematical%20combinatorics&rft.au=Yilmaz,%20S%C3%BCha&rft.date=2018-09-01&rft.volume=3&rft.spage=11&rft.epage=24&rft.pages=11-24&rft.issn=1937-1055&rft.eissn=1937-1047&rft_id=info:doi/&rft_dat=%3Cproquest%3E2185816075%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2185816075&rft_id=info:pmid/&rfr_iscdi=true